toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author n_TOF Collaboration (Barbagallo, M. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A. url  doi
openurl 
  Title Be-7(n,alpha)He-4 Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN Type Journal Article
  Year 2016 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 117 Issue 15 Pages 152701 - 7pp  
  Keywords  
  Abstract The energy-dependent cross section of the (7)Bed(n,alpha)He-4 reaction, of interest for the so-called cosmological lithium problem in big bang nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of Be-7 and by the low reaction cross section have been overcome at nTOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the nTOF facility at CERN, the availability of a sufficient amount of chemically pure Be-7, and a specifically designed experimental setup. Coincidences between the two alpha particles have been recorded in two Si-Be-7-Si arrays placed directly in the neutron beam. The present results are consistent, at thermal neutron energy, with the only previous measurement performed in the 1960s at a nuclear reactor. The energy dependence reported here clearly indicates the inadequacy of the cross section estimates currently used in BBN calculations. Although new measurements at higher neutron energy may still be needed, the n_TOF results hint at a minor role of this reaction in BBN, leaving the long-standing cosmological lithium problem unsolved.  
  Address [Barbagallo, M.; Colonna, N.; Damone, L.; Mastromarco, M.; Mazzone, A.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy, Email: nicola.colonna@ba.infn.it  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000384479300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2822  
Permanent link to this record
 

 
Author n_TOF Collaboration (Mingrone, F. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. url  doi
openurl 
  Title Neutron capture cross section measurement of U-238 at the CERN n_TOF facility in the energy region from 1 eV to 700 keV Type Journal Article
  Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 95 Issue 3 Pages 034604 - 14pp  
  Keywords  
  Abstract The aim of this work is to provide a precise and accurate measurement of the U-238(n,gamma) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behavior of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the uncertainty in the radiative capture cross section of U-238 should be further reduced to 1-3% in the energy region from 20 eV to 25 keV. To this purpose, addressed by the Nuclear Energy Agency as a priority nuclear data need, complementary experiments, one at the GELINA and two at the nTOF facility, were proposed and carried out within the 7th Framework Project ANDES of the European Commission. The results of one of these U-238(n, gamma) measurements performed at the nTOF CERN facility are presented in this work. The gamma-ray cascade following the radiative neutron capture has been detected exploiting a setup of two C6D6 liquid scintillators. Resonance parameters obtained from this work are on average in excellent agreement with the ones reported in evaluated libraries. In the unresolved resonance region, this work yields a cross section in agreement with evaluated libraries up to 80 keV, while for higher energies our results are significantly higher.  
  Address [Mingrone, F.; Berthoumieux, E.; Brugger, M.; Calviani, M.; Cerutti, F.; Chiaveri, E.; Chin, M.; Guerrero, C.; Hernandez-Prieto, A.; Kadi, Y.; Losito, R.; Rubbia, C.; Tsinganis, A.; Vlachoudis, V.] CERN, European Org Nucl Res, Geneva, Switzerland, Email: federica.mingrone@cern.ch  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000396022500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3030  
Permanent link to this record
 

 
Author PreSPEC and AGATA Collaborations (Ralet, D. et al); Domingo-Pardo, C.; Gadea, A.; Huyuk, T. doi  openurl
  Title Lifetime measurement of neutron-rich even-even molybdenum isotopes Type Journal Article
  Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 95 Issue 3 Pages 034320 - 11pp  
  Keywords  
  Abstract Background: In the neutron-rich A approximate to 100 mass region, rapid shape changes as a function of nucleon number as well as coexistence of prolate, oblate, and triaxial shapes are predicted by various theoretical models. Lifetime measurements of excited levels in the molybdenum isotopes allow the determination of transitional quadrupole moments, which in turn provides structural information regarding the predicted shape change. Purpose: The present paper reports on the experimental setup, the method that allowed one to measure the lifetimes of excited states in even-even molybdenum isotopes from mass A = 100 up to mass A = 108, and the results that were obtained. Method: The isotopes of interest were populated by secondary knock-out reaction of neutron-rich nuclei separated and identified by the GSI fragment separator at relativistic beam energies and detected by the sensitive PreSPEC-AGATA experimental setup. The latter included the Lund-York-Cologne calorimeter for identification, tracking, and velocity measurement of ejectiles, and AGATA, an array of position sensitive segmented HPGe detectors, used to determine the interaction positions of the gamma ray enabling a precise Doppler correction. The lifetimes were determined with a relativistic version of the Doppler-shift-attenuation method using the systematic shift of the energy after Doppler correction of a gamma-ray transition with a known energy. This relativistic Doppler-shift-attenuation method allowed the determination of mean lifetimes from 2 to 250 ps. Results: Even-even molybdenum isotopes from mass A = 100 to A = 108 were studied. The decays of the low-lying states in the ground-state band were observed. In particular, two mean lifetimes were measured for the first time: tau = 29.7(-9.1)(+11.3) ps for the 4(+) state of Mo-108 and tau = 3.2(-0.7)(+ 0.7) ps for the 6(+) state of Mo-102. Conclusions: The reduced transition strengths B(E2), calculated from lifetimes measured in this experiment, compared to beyond-mean-field calculations, indicate a gradual shape transition in the chain of molybdenum isotopes when going from A = 100 to A = 108 with a maximum reached at N = 64. The transition probabilities decrease for Mo-108 which may be related to its well-pronounced triaxial shape indicated by the calculations.  
  Address [Ralet, D.; Cortes, M. L.; Gregor, E.; Guastalla, G.; Givechev, A.; Habermann, T.; Louchart-Henning, C.; Merchan, E.; Pietralla, N.; Reese, M.; Singh, P. P.; Stahl, C.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany, Email: ralet@csnsm.in2p3.fr  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399143200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3045  
Permanent link to this record
 

 
Author Dudouet, J. et al; Domingo-Pardo, C.; Gadea, A.; Perez-Vidal, R.M. doi  openurl
  Title Kr-96(36)60-Low-Z Boundary of the Island of Deformation at N=60 Type Journal Article
  Year 2017 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 118 Issue 16 Pages 162501 - 6pp  
  Keywords  
  Abstract Prompt.-ray spectroscopy of the neutron-rich Kr-96, produced in transfer-and fusion-induced fission reactions, has been performed using the combination of the Advanced Gamma Tracking Array and the VAMOS + +spectrometer. A second excited state, assigned to J pi = 4(+), is observed for the first time, and a previously reported level energy of the first 2+ excited state is confirmed. The measured energy ratio R-4/2 = E(4(+))/E(2(+)) = 2.12(1) indicates that this nucleus does not show a well-developed collectivity contrary to that seen in heavier N = 60 isotones. This new measurement highlights an abrupt transition of the degree of collectivity as a function of the proton number at Z = 36, of similar amplitude to that observed at N = 60 at higher Z values. A possible reason for this abrupt transition could be related to the insufficient proton excitations in the g(9/2), d(5/2), and s(1/2) orbitals to generate strong quadrupole correlations or to the coexistence of competing different shapes. An unexpected continuous decrease of R-4/2 as a function of the neutron number up to N = 60 is also evidenced. This measurement establishes the Kr isotopic chain as the low-Z boundary of the island of deformation for N = 60 isotones. A comparison with available theoretical predictions using different beyond mean-field approaches shows that these models fail to reproduce the abrupt transitions at N = 60 and Z = 36.  
  Address [Dudouet, J.; Maquart, G.; Stezowski, O.; Redon, N.] Univ Lyon 1, CNRS IN2P3, IPN Lyon, F-69622 Villeurbanne, France, Email: j.dudouet@ipnl.in2p3.fr  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399816500006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3098  
Permanent link to this record
 

 
Author Ong, W.J. et al; Domingo-Pardo, C. url  doi
openurl 
  Title Low-lying level structure of Cu-56 and its implications for the rp process Type Journal Article
  Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 95 Issue 5 Pages 055806 - 8pp  
  Keywords  
  Abstract The low-lying energy levels of proton-rich Cu-56 have been extracted using in-beam gamma-ray spectroscopy with the state-of-the-art gamma-ray tracking array GRETINA in conjunction with the S800 spectrograph at the National Superconducting Cyclotron Laboratory at Michigan State University. Excited states in Cu-56 serve as resonances in the Ni-55(p,gamma)Cu-56 reaction, which is a part of the rp process in type-I x-ray bursts. To resolve existing ambiguities in the reaction Q value, a more localized isobaric multiplet mass equation (IMME) fit is used, resulting in Q = 639 +/- 82 keV. We derive the first experimentally constrained thermonuclear reaction rate for Ni-55(p,.) Cu-56. We find that, with this newrate, the rp processmay bypass the (56)Niwaiting point via the Ni-55(p,gamma) reaction for typical x-ray burst conditions with a branching of up to similar to 40%. We also identify additional nuclear physics uncertainties that need to be addressed before drawing final conclusions about the rp-process reaction flow in the Ni-56 region.  
  Address [Ong, W. -J.; Langer, C.; Montes, F.; Bazin, D.; Brown, B. A.; Browne, J.; Cyburt, R.; Deleeuw, E. B.; Gade, A.; Keek, L.; Kontos, A.; Lemasson, A.; Lunderberg, E.; Meisel, Z.; Noji, S.; Nunes, F. M.; Perdikakis, G.; Pereira, J.; Quinn, S. J.; Recchia, F.; Schatz, H.; Scott, M.; Simon, A.; Spyrou, A.; Stevens, J.; Stroberg, S. R.; Weisshaar, D.; Wheeler, J.; Wimmer, K.; Zegers, R. G. T.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000401655000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3139  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva