|   | 
Details
   web
Records
Author Navarro-Salas, J.; Pla, S.
Title Particle Creation and the Schwinger Model Type Journal Article
Year 2022 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 14 Issue 11 Pages 2435 - 9pp
Keywords Schwinger model; semiclassical theory; particle creation
Abstract We study the particle creation process in the Schwinger model coupled with an external classical source. One can approach the problem by taking advantage of the fact that the full quantized model is solvable and equivalent to a (massive) gauge field with a non-local effective action. Alternatively, one can also face the problem by following the standard semiclassical route. This means quantizing the massless Dirac field and considering the electromagnetic field as a classical background. We evaluate the energy created by a generic, homogeneous, and time-dependent source. The results match exactly in both approaches. This proves in a very direct and economical way the validity of the semiclassical approach for the (massless) Schwinger model, in agreement with a previous analysis based on the linear response equation. Our discussion suggests that a similar analysis for the massive Schwinger model could be used as a non-trivial laboratory to confront a fully quantized solvable model with its semiclassical approximation, therefore mimicking the long-standing confrontation of quantum gravity with quantum field theory in curved spacetime.
Address [Navarro-Salas, Jose] Univ Valencia, Ctr Mixto Univ Valencia CSIC, Fac Fis, Dept Fis Teor & IFIC, Burjassot 46100, Valencia, Spain, Email: jnavarro@ific.uv.es
Corporate Author Thesis
Publisher (up) Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000895122100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5432
Permanent link to this record
 

 
Author Sanchis-Lozano, M.A.; Barbero, J.F.; Navarro-Salas, J.
Title Prime Numbers, Quantum Field Theory and the Goldbach Conjecture Type Journal Article
Year 2012 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 27 Issue 23 Pages 1250136 - 24pp
Keywords Quantum field theory; number theory; renormalization; Goldbach conjecture
Abstract Motivated by the Goldbach conjecture in number theory and the Abelian bosonization mechanism on a cylindrical two-dimensional space-time, we study the reconstruction of a real scalar field as a product of two real fermion (so-called prime) fields whose Fourier expansion exclusively contains prime modes. We undertake the canonical quantization of such prime fields and construct the corresponding Fock space by introducing creation operators b(p)(dagger) – labeled by prime numbers p – acting on the vacuum. The analysis of our model, based on the standard rules of quantum field theory and the assumption of the Riemann hypothesis, allows us to prove that the theory is not renormalizable. We also comment on the potential consequences of this result concerning the validity or breakdown of the Goldbach conjecture for large integer numbers.
Address [Sanchis-Lozano, Miguel-Angel; Navarro-Salas, Jose] Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto, CSIC, E-46100 Valencia, Spain, Email: Miguel.Angel.Sanchis@ific.uv.es;
Corporate Author Thesis
Publisher (up) World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000308945100007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1173
Permanent link to this record
 

 
Author Agullo, I.; del Rio, A.; Navarro-Salas, J.
Title Gravity and handedness of photons Type Journal Article
Year 2017 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume 26 Issue 12 Pages 1742001 - 5pp
Keywords Quantum fields in curved spacetime; symmetry and conservation laws; electromagnetic wave propagation; anomalies
Abstract Vacuum fluctuations of quantum fields are altered in the presence of a strong gravitational background, with important physical consequences. We argue that a nontrivial spacetime geometry can act as an optically active medium for quantum electromagnetic radiation, in such a way that the state of polarization of radiation changes in time, even in the absence of electromagnetic sources. This is a quantum effect, and is a consequence of an anomaly related to the classical invariance under electric-magnetic duality rotations in Maxwell theory.
Address [Agullo, Ivan] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;
Corporate Author Thesis
Publisher (up) World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000414411900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3355
Permanent link to this record