Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–13] |
![]() |
DUNE Collaboration(Abud, A. A. et al), Amar, H., Amedo, P., Antonova, M., Barenboim, G., Benitez Montiel, C., et al. (2024). The DUNE far detector vertical drift technology Technical design report. J. Instrum., 19(8), T08004–418pp.
Abstract: DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model.
The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals. |
DUNE Collaboration(Abud, A. A. et al), Amar Es-Sghir, H., Amedo, P., Antonova, M., Barenboim, G., Benitez Montiel, C., et al. (2024). Doping liquid argon with xenon in ProtoDUNE Single-Phase: effects on scintillation light. J. Instrum., 19(8), P08005–42pp.
Abstract: Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen.
|
DUNE Collaboration(Abud, A. A. et al), Amar, H., Amedo, P., Antonova, M., Barenboim, G., Benitez Montiel, C., et al. (2024). DUNE Phase II: scientific opportunities, detector concepts, technological solutions. J. Instrum., 19(12), P12005–91pp.
Abstract: The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a “Module of Opportunity”, aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos.
|
De Romeri, V., Perez-Gonzalez, Y. F., & Tolino, A. (2025). Primordial black hole probes of heavy neutral leptons. J. Cosmol. Astropart. Phys., 04(4), 018–35pp.
Abstract: Primordial black holes (PBH), while still constituting a viable dark matter component, are expected to evaporate through Hawking radiation. Assuming the semi-classical approximation holds up to near the Planck scale, PBHs are expected to evaporate by the present time, emitting a significant flux of particles in their final moments, if produced in the early Universe with an initial mass of similar to 10(15) g. These “exploding” black holes will release a burst of Standard Model particles alongside any additional degrees of freedom, should they exist. We explore the possibility that heavy neutral leptons (HNL), mixing with active neutrinos, are emitted in the final evaporation stages. We perform a multimessenger analysis. We calculate the expected number of active neutrinos from such an event, including contributions due to the HNL decay for different assumptions on the mixings, that could be visible in IceCube. We also estimate the number of gamma-ray events expected at HAWC. By combining the two signals, we infer sensitivities on the active-sterile neutrino mixing and on the sterile neutrino mass. We find that, for instance, for the scenario where U(tau)4 not equal 0, IceCube and HAWC could improve current constraints by a few orders of magnitude, for HNLs masses between 0.1-1 GeV, and a PBH explosion occurring at a distance of similar to 10(-4) pc from Earth.
|
De Romeri, V., Papoulias, D. K., & Ternes, C. A. (2025). Bounds on new neutrino interactions from the first CEνNS data at direct detection experiments. J. Cosmol. Astropart. Phys., 05(5), 012–23pp.
Abstract: Recently, two dark matter direct detection experiments have announced the first indications of nuclear recoils from solar 8B neutrinos via coherent elastic neutrino-nucleus scattering (CE nu NS) with xenon nuclei. These results constitute a turning point, not only for dark matter searches that are now entering the neutrino fog, but they also bring out new opportunities to exploit dark matter facilities as neutrino detectors. We investigate the implications of recent data from the PandaX-4T and XENONnT experiments on both Standard Model physics and new neutrino interactions. We first extract information on the weak mixing angle at low momentum transfer. Then, following a phenomenological approach, we consider Lorentz-invariant interactions (scalar, vector, axial-vector, and tensor) between neutrinos, quarks and charged leptons. Furthermore, we study the U(1)B-L scenario as a concrete example of a new anomaly-free vector interaction. We find that despite the low statistics of these first experimental results, the inferred bounds are in some cases already competitive. For the scope of this work we also compute new bounds on some of the interactions using CE nu NS data from COHERENT and electron recoil data from XENONnT, LUX-ZEPLIN, PandaX-4T, and TEXONO. It seems clear that while direct detection experiments continue to take data, more precise measurements will be available, thus allowing to test new neutrino interactions at the same level or even improving over dedicated neutrino facilities.
|