|   | 
Details
   web
Records
Author Chen, P.; Ding, G.J.; Srivastava, R.; Valle, J.W.F.
Title Predicting neutrino oscillations with “bi-large” lepton mixing matrices Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 792 Issue Pages 461-464
Keywords
Abstract We propose two schemes for the lepton mixing matrix U = (U1U nu)-U-dagger, where U = U-1 refers to the charged sector, and U-v denotes the neutrino diagonalization matrix. We assume U-nu to be CP conserving and its three angles to be connected with the Cabibbo angle in a simple manner. CP violation arises solely from the U-1, assumed to have the CKM form, U-1 similar or equal to V-CKM, suggested by unification. Oscillation parameters depend on a single parameter, leading to narrow ranges for the “solar” and “accelerator” angles theta(12) and theta(23), as well as for the CP phase, predicted as delta(CP) similar to +/- 1.3 pi.
Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Shandong, Peoples R China, Email: pche@mail.ustc.edu.cn;
Corporate Author Thesis
Publisher (up) Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000466802100066 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4000
Permanent link to this record
 

 
Author Centelles Chulia, S.; Cepedello, R.; Peinado, E.; Srivastava, R.
Title Scotogenic dark symmetry as a residual subgroup of Standard Model symmetries Type Journal Article
Year 2020 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 44 Issue 8 Pages 083110 - 7pp
Keywords neutrino masses; dark matter; symmetries; scotogenic
Abstract We demonstrate that a scotogenic dark symmetry can be obtained as a residual subgroup of the global U(1)(B-L) symmetry already present in the Standard Model. In addition, we propose a general framework in which the U(1)(B-L) symmetry is spontaneously broken into an even Z(2n) subgroup, setting the general conditions for neutrinos to be Majorana and for dark matter stability to exist in terms of the residual Z(2n). As an example, under this general framework, we build a class of simple models where, in a scotogenic manner, the dark matter candidate is the lightest particle running inside the mass loop of a neutrino. The global U(1)(B-L) symmetry in our framework, being anomaly free, can also be gauged in a straightforward manner leading to a richer phenomenology.
Address [Chulia, Salvador Centelles; Cepedello, Ricardo; Srivastava, Rahul] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna C Catedratico Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000557423400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4494
Permanent link to this record
 

 
Author De Romeri, V.; Majumdar, A.; Papoulias, D.K.; Srivastava, R.
Title XENONnT and LUX-ZEPLIN constraints on DSNB-boosted dark matter Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 028 - 34pp
Keywords dark matter detectors; dark matter simulations; supernova neutrinos; supernovas
Abstract We consider a scenario in which dark matter particles are accelerated to semirelativistic velocities through their scattering with the Diffuse Supernova Neutrino Background. Such a subdominant, but more energetic dark matter component can be then detected via its scattering on the electrons and nucleons inside direct detection experiments. This opens up the possibility to probe the sub -GeV mass range, a region of parameter space that is usually not accessible at such facilities. We analyze current data from the XENONnT and LUX-ZEPLIN experiments and we obtain novel constraints on the scattering cross sections of sub -GeV boosted dark matter with both nucleons and electrons. We also highlight the importance of carefully taking into account Earth's attenuation effects as well as the finite nuclear size into the analysis. By comparing our results to other existing constraints, we show that these effects lead to improved and more robust constraints.
Address [Romeri, Valentina De] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient UV C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher (up) IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001195757300010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6043
Permanent link to this record
 

 
Author Chen, P.; Centelles Chulia, S.; Ding, G.J.; Srivastava, R.; Valle, J.W.F.
Title Neutrino predictions from generalized CP symmetries of charged leptons Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 077 - 26pp
Keywords Neutrino Physics; CP violation
Abstract We study the implications of generalized CP transformations acting on the mass matrices of charged leptons in a model-independent way. Generalized e – mu, e – tau and μ- tau symmetries are considered in detail. In all cases the physical parameters of the lepton mixing matrix, three mixing angles and three CP phases can be expressed in terms of a restricted set of independent “theory parameters” that characterize a given choice of CP transformation. This leads to implications for neutrino oscillations as well as neutrinoless double beta decay experiments.
Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Peoples R China, Email: pche@mail.ustc.edu.cn;
Corporate Author Thesis
Publisher (up) Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000438620700007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3659
Permanent link to this record
 

 
Author Chen, P.; Centelles Chulia, S.; Ding, G.J.; Srivastava, R.; Valle, J.W.F.
Title CP symmetries as guiding posts: revamping tri-bi-maximal mixing. Part I Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 036 - 27pp
Keywords CP violation; Discrete Symmetries; Neutrino Physics
Abstract We analyze the possible generalized CP symmetries admitted by the Tri-Bi-Maximal (TBM) neutrino mixing. Taking advantage of these symmetries we construct in a systematic way other variants of the standard TBM Ansatz. Depending on the type and number of generalized CP symmetries imposed, we get new mixing matrices, all of which related to the original TBM matrix. One of such revamped TBM variants is the recently discussed mixing matrix of arXiv:1806.03367. We also briefly discuss the phenomenological implications following from these mixing patterns.
Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, 238 Songling Rd, Qingdao 266100, Shandong, Peoples R China, Email: pche@mail.ustc.edu.cn;
Corporate Author Thesis
Publisher (up) Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000460751400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3941
Permanent link to this record