|   | 
Details
   web
Records
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.
Title Infrared lessons for ultraviolet gravity: the case of massive gravity and Born-lnfeld Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 004 - 26pp
Keywords modified gravity; alternatives to inflation; gravity
Abstract We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a minimal version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. In vacuum we recover Ricci-flat solutions, but also an additional physical solution corresponding to an Einstein space. The existence of two physical branches remains for non-vacuum solutions and, in addition, the branch that connects to the Einstein space in vacuum is not very sensitive to the specific value of the energy density. For the branch that connects to the General Relativity limit we generically find three behaviours for the Hubble function depending on the equation of state of the fluid, namely: either there is a maximum value for the energy density that connects continuously with vacuum, or the energy density can be arbitrarily large but the Hubble function saturates and remains constant at high energy densities, or the energy density is unbounded and the Hubble function grows faster than in General Relativity. The second case is particularly interesting because it could offer an interesting inflationary epoch even in the presence of a dust component. Finally, we discuss the possibility of avoiding certain types of singularities within the minimal model.
Address [Jimenez, Jose Beltran] Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, Inst Math & Phys, B-1348 Louvain La Neuve, Belgium, Email: jose.beltran@uclouvain.be;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000346105300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2039
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.
Title Tensor perturbations in a general class of Palatini theories Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 026 - 16pp
Keywords modified gravity; inflation; gravity; dark energy theory
Abstract We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the spacetime metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.
Address [Jimenez, Jose Beltran] Univ Louvain, Inst Math & Phys, Ctr Cosmol Particle Phys & Phenomenol, B-1318 Louvain, Belgium, Email: jose.beltran@cpt.univ.mrs.fr;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000359215400027 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2368
Permanent link to this record
 

 
Author Bazeia, D.; Losano, L.; Menezes, R.; Olmo, G.J.; Rubiera-Garcia, D.
Title Robustness of braneworld scenarios against tensorial perturbations Type Journal Article
Year 2015 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 32 Issue 21 Pages 215011 - 10pp
Keywords brane-worlds; tensorial perturbations; metric-affine geometry
Abstract Inspired by the peculiarities of the effective geometry of crystalline structures, we reconsider thick brane scenarios from a metric-affine perspective. We show that for a rather general family of theories of gravity, whose Lagrangian is an arbitrary function of the metric and the Ricci tensor, the background and scalar field equations can be written in first-order form, and tensorial perturbations have a non negative definite spectrum, which makes them stable under linear perturbations regardless of the form of the gravity Lagrangian. We find, in particular, that the tensorial zero modes are exactly the same as predicted by Einstein's theory regardless of the scalar field and gravitational Lagrangians.
Address [Bazeia, D.; Losano, L.; Olmo, Gonzalo J.] Univ Fed Paraiba, Dept Fis, BR-58051900 Joao Pessoa, Paraiba, Brazil, Email: bazeia@fisica.ufpb.br;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000364921200014 Approved no
Is ISI no International Collaboration yes
Call Number IFIC @ pastor @ Serial 2459
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Ringeval, C.
Title Cascading dust inflation in Born-lnfeld gravity Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 046 - 30pp
Keywords modified gravity; inflation
Abstract In the framework of Born-Infeld inspired gravity theories, which deviates from General Relativity (GR) in the high curvature regime, we discuss the viability of Cosmic Inflation without scalar fields. For energy densities higher than the new mass scale of the theory, a gravitating (lust component is shown to generically induce an accelerated expansion of the Universe. Within such a simple scenario, inflation gracefiffly exits when the CR regime is recovered, but the Universe would remain matter dominated. In order to implement a reheating era after inflation, we then consider inflation to be driven by a mixture of unstable dust species decaying into radiation. Because the speed of sound gravitates within the BornInfeld model under consideration, our scenario ends up being predictive on various open questions of the inflationary paradigm. The total number of e-folds of acceleration is given by the lifetime of the unstable dust components and is related to the duration of reheating. As a result, inflation does not last much longer than the number of e-folds of deceleration allowing a small spatial curvature and large scale deviations to isotropy to be observable today. Energy densities are self-regulated as inflation can only start for a total energy density less than a threshold value, again related to the species' lifetime. Above this threshold, the Universe may bc nee thereby avoiding a singularity. Another distinctive feature is that the accelerated expansion is of the superinflationary ldnd, namely the first Hubble flow function is negative. We show however that the tensor modes are never excited and the tensor-to-scalar ratio is always vanishing, independently of the energy scale of inflation.
Address [Jimenez, Jose Beltran] Aix Marseille Univ, Ctr Phys Theor, UMR 7332, F-13288 Marseille, France, Email: jose.beltran@cpt.univ-mrs.fr;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000365821200047 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2478
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A.
Title Impact of curvature divergences on physical observers in a wormhole space-time with horizons Type Journal Article
Year 2016 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 33 Issue 11 Pages 115007 - 12pp
Keywords Singularities; black holes; metric-affine geometry
Abstract The impact of curvature divergences on physical observers in a black hole space-time, which, nonetheless, is geodesically complete is investigated. This space-time is an exact solution of certain extensions of general relativity coupled to Maxwell's electrodynamics and, roughly speaking, consists of two Reissner-Nordstrom (or Schwarzschild or Minkowski) geometries connected by a spherical wormhole near the center. We find that, despite the existence of infinite tidal forces, causal contact is never lost among the elements making up the observer. This suggests that curvature divergences may not be as pathological as traditionally thought.
Address [Olmo, Gonzalo J.; Sanchez-Puente, A.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000377442000010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2728
Permanent link to this record
 

 
Author Bazeia, D.; Losano, L.; Olmo, G.J.; Rubiera-Garcia, D.
Title Geodesically complete BTZ-type solutions of 2+1 Born-Infeld gravity Type Journal Article
Year 2017 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 34 Issue 4 Pages 045006 - 21pp
Keywords Born-Infeld gravity; BTZ; wormholes; nonsingular solutions; geodesic completeness
Abstract We study Born-Infeld gravity coupled to a static, non-rotating electric field in 2 + 1 dimensions and find exact analytical solutions. Two families of such solutions represent geodesically complete, and hence nonsingular, spacetimes. Another family represents a point-like charge with a singularity at the center. Despite the absence of rotation, these solutions resemble the charged, rotating BTZ solution of general relativity but with a richer structure in terms of horizons. The nonsingular character of the first two families turn out to be attached to the emergence of a wormhole structure on their innermost region. This seems to be a generic prediction of extensions of general relativity formulated in metric-affine (or Palatini) spaces, where metric and connection are regarded as independent degrees of freedom.
Address [Bazeia, D.; Losano, L.; Olmo, Gonzalo J.] Univ Fed Paraiba, Dept Fis, BR-58051900 Joao Pessoa, Paraiba, Brazil, Email: bazeia@fisica.ufpb.br;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000395398800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3013
Permanent link to this record
 

 
Author Afonso, V.I.; Olmo, G.J.; Rubiera-Garcia, D.
Title Scalar geons in Born-Infeld gravity Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 031 - 35pp
Keywords modified gravity; Wormholes
Abstract The existence of static, spherically symmetric, self-gravitating scalar field solutions in the context of Born-Infeld gravity is explored. Upon a combination of analytical approximations and numerical methods, the equations for a free scalar field (without a potential term) are solved, verifying that the solutions recover the predictions of General Relativity far from the center but finding important new effects in the central regions. We find two classes of objects depending on the ratio between the Schwarzschild radius and a length scale associated to the Born-Infeld theory: massive solutions have a wormhole structure, with their throat at r = 2 M, while for the lighter configurations the topology is Euclidean. The total energy density of these solutions exhibits a solitonic profile with a maximum peaked away from the center, and located at the throat whenever a wormhole exists. The geodesic structure and curvature invariants are analyzed for the various configurations considered.
Address [Afonso, V. I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58109970 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000408311900031 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3285
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.; Rubiera-Garcia, D.
Title On gravitational waves in Born-Infeld inspired non-singular cosmologies Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 029 - 23pp
Keywords alternatives to inflation; modified gravity; physics of the early universe; primordial gravitational waves (theory)
Abstract We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.
Address [Beltran Jimenez, Jose] Univ Toulon & Var, Aix Marseille Univ, CNRS, CPT, Marseille, France, Email: jose.beltran@uam.es;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000413332400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3337
Permanent link to this record
 

 
Author Alfonso, V.I.; Bejarano, C.; Beltran Jimenez, J.; Olmo, G.J.; Orazi, E.
Title The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields Type Journal Article
Year 2017 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 34 Issue 23 Pages 235003 - 20pp
Keywords modified gravity; metric-affine theories; torsion; non-minimal couplings
Abstract We study a large family of metric-affine theories with a projective symmetry, including non-minimally coupled matter fields which respect this invariance. The symmetry is straightforwardly realised by imposing that the connection only enters through the symmetric part of the Ricci tensor, even in the matter sector. We leave the connection completely free (including torsion), and obtain its general solution as the Levi-Civita connection of an auxiliary metric, showing that the torsion only appears as a projective mode. This result justifies the widely used condition of setting vanishing torsion in these theories as a simple gauge choice. We apply our results to some particular cases considered in the literature, including the so-called Eddington-inspired-Born-Infeld theories among others. We finally discuss the possibility of imposing a gauge fixing where the connection is metric compatible, and comment on the genuine character of the non-metricity in theories where the two metrics are not conformally related.
Address [Alfonso, Victor I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58109970 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000414726500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3353
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A.
Title Accelerated observers and the notion of singular spacetime Type Journal Article
Year 2018 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 35 Issue 5 Pages 055010 - 18pp
Keywords general relativity; geodesic behaviour; black holes; spacetime singularities; modified theories of gravity
Abstract Geodesic completeness is typically regarded as a basic criterion to determine whether a given spacetime is regular or singular. However, the principle of general covariance does not privilege any family of observers over the others and, therefore, observers with arbitrary motions should be able to provide a complete physical description of the world. This suggests that in a regular spacetime, all physically acceptable observers should have complete paths. In this work we explore this idea by studying the motion of accelerated observers in spherically symmetric spacetimes and illustrate it by considering two geodesically complete black hole spacetimes recently described in the literature. We show that for bound and locally unbound accelerations, the paths of accelerated test particles are complete, providing further support to the regularity of such spacetimes.
Address [Olmo, Gonzalo J.; Sanchez-Puente, Antonio] Univ Valencia, Dept Fis Teor, CSIC, Ctr Mixto, E-46100 Valencia, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000424042100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3473
Permanent link to this record