|   | 
Details
   web
Records
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Bigongiari, C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 032 - 22pp
Keywords neutrino experiments; dark matter detectors; supersymmetry and cosmology; particle physics – cosmology connection
Abstract A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two supersymmetric models, CMSSM and MSSM-7. The ANTARES limits are comparable with those obtained by other neutrino observatories and are more stringent than those obtained by direct search experiments for the spin-dependent WIMP-proton cross-section in the case of hard self-annihilation channels (W+W-, tau(+)tau(-)).
Address [Adrian-Martinez, S.; Ardid, M.; Larosa, G.; Martinez-Mora, J. A.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, Gandia 46730, Spain
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000327843900033 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1671
Permanent link to this record
 

 
Author Di Valentino, E.; Melchiorri, A.; Mena, O.
Title Dark radiation sterile neutrino candidates after Planck data Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 018 - 13pp
Keywords cosmological neutrinos; neutrino properties; neutrino theory; dark energy theory
Abstract Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom 3.62(-0.48)(+0.50) at 95% CL. New Planck data provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. We present here the bounds on sterile neutrino models combining Planck data with galaxy clustering information. Assuming N-eff active plus sterile massive neutrino species, in the case of a Planck+WP+HighL+HST analysis we find m(nu,sterile)(eff) < 0.36 eV and 3.14 < N-eff < 4.15 at 95% CL, while using Planck+WP+HighL data in combination with the full shape of the galaxy power spectrum from the Baryon Oscillation Spectroscopic Survey BOSS Data Relase 9 measurements, we find that 3.30 < N-eff < 4.43 and m(nu,sterile)(eff) < 0.33 eV both at 95% CL with the three active neutrinos having the minimum mass allowed in the normal hierarchy scheme, i.e. Sigma m(nu) similar to 0.06 eV. These values compromise the viability of the (3 + 2) massive sterile neutrino models for the parameter region indicated by global fits of neutrino oscillation data. Within the (3 + 1) massive sterile neutrino scenario, we find m(nu,sterile)(eff) < 0.34 eV at 95% CL. While the existence of one extra sterile massive neutrino state is compatible with current oscillation data, the values for the sterile neutrino mass preferred by oscillation analyses are significantly higher than the current cosmological bound. We review as well the bounds on extended dark sectors with additional light species based on the latest Planck CMB observations.
Address [Di Valentino, Eleonora; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy, Email: eleonora.divalentino@roma1.infn.it;
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000327843900019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1672
Permanent link to this record
 

 
Author Mena, O.; Razzaque, S.
Title Hints of an axion-like particle mixing in the GeV gamma-ray blazar data? Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 023 - 12pp
Keywords axions; active galactic nuclei
Abstract Axion-Like Particles (ALPs), if exist in nature, are expected to mix with photons in the presence of an external magnetic field. The energy range of photons which undergo strong mixing with ALPs depends on the ALP mass, on its coupling with photons as well as on the external magnetic field and particle density configurations. Recent observations of blazars by the Fermi Gamma-Ray Space Telescope in the 0.1-300 GeV energy range show a break in their spectra in the 1-10 GeV range. We have modeled this spectral feature for the flat-spectrum radio quasar 3C454.3 during its November 2010 outburst, assuming that a significant fraction of the gamma rays convert to ALPs in the large scale jet of this blazar. Using theoretically motivated models for the magnetic field and particle density con figurations in the kiloparsec scale jet, outside the broad-line region, we find an ALP mass m(a) similar to (1 – 3).10(-7) eV and coupling g(a gamma) similar to (1 – 3).10(-10) GeV-1 after performing an illustrative statistical analysis of spectral data in four different epochs of emission. The precise values of m(a) and g(a gamma) depend weakly on the assumed particle density con figuration and are consistent with the current experimental bounds on these quantities. We apply this method and ALP parameters found from fitting 3C454.3 data to another flat-spectrum radio quasar PKS1222+216 (4C+21.35) data up to 400 GeV, as a consistency check, and found good fit. We find that the ALP-photon mixing effect on the GeV spectra may not be washed out for any reasonable estimate of the magnetic field in the intergalactic media.
Address [Mena, Olga] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: omena@ific.uv.es;
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000327843900024 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1673
Permanent link to this record
 

 
Author Ruiz de Austri, R.; Perez de los Heros, C.
Title Impact of nucleon matrix element uncertainties on the interpretation of direct and indirect dark matter search results Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 049 - 19pp
Keywords dark matter theory; dark matter experiments; supersymmetry and cosmology
Abstract We study in detail the impact of the current uncertainty in nucleon matrix elements on the sensitivity of direct and indirect experimental techniques for dark matter detection. We perform two scans in the framework of the cMSSM: one using recent values of the pion-sigma term obtained from Lattice QCD, and the other using values derived from experimental measurements. The two choices correspond to extreme values quoted in the literature and reflect the current tension between different ways of obtaining information about the structure of the nucleon. All other inputs in the scans, astrophysical and from particle physics, are kept unchanged. We use two experiments, XENON100 and IceCube, as benchmark cases to illustrate our case. We find that the interpretation of dark matter search results from direct detection experiments is more sensitive to the choice of the central values of the hadronic inputs than the results of indirect search experiments. The allowed regions of cMSSM parameter space after including XENON100 constrains strongly differ depending on the assumptions on the hadronic matrix elements used. On the other hand, the constraining potential of IceCube is almost independent of the choice of these values.
Address [Ruiz de Austri, R.] IFIC UV CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: rruiz@ific.uv.es;
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000327843900050 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1674
Permanent link to this record
 

 
Author XENON100 Collaboration (Aprile, E. et al); Orrigo, S.E.A.
Title The neutron background of the XENON100 dark matter search experiment Type Journal Article
Year 2013 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 40 Issue 11 Pages 115201 - 17pp
Keywords
Abstract TheXENON100 experiment, installed underground at the LaboratoriNazionali del Gran Sasso, aims to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering off xenon nuclei. This paper presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from (alpha, n) reactions and spontaneous fission due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on MonteCarlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by theXENON100 experiment in 2011 and 2012, 0.11(-0.04)(+0.08) events and 0.17(-0.07)(+0.12) events, respectively, and conclude that they do not limit the sensitivity of the experiment.
Address [Aprile, E.; Budnik, R.; Choi, B.; Contreras, H.; Giboni, K-L; Goetzke, L. W.; Lim, K. E.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: alexkish@physik.uzh.ch
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000325766300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1684
Permanent link to this record
 

 
Author ATLAS Tile Calorimeter Community (Abdallah, J. et al); Calderon, D.; Castillo Gimenez, V.; Costelo, J.; Ferrer, A.; Fullana, E.; Gonzalez, V.; Higon-Rodriguez, E.; Poveda, J.; Ruiz, A.; Salvachua, B.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls Ferrer, J.A.
Title Mechanical construction and installation of the ATLAS tile calorimeter Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages T11001 - 26pp
Keywords Detector design and construction technologies and materials; Calorimeters
Abstract This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities +/- 1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight.
Address [Abdallah, J.; Calderon, D.; Castillo, M. V.; Costello, J.; Ferrer, A.; Fullana, E.; Gonzalez, V.; Higon, E.; Poveda, J.; Ruiz, A.; Salvachua, B.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls, J. A.] Univ Valencia, CSIC, Ctr Mixto, IFIC, E-46100 Valencia, Spain, Email: Proudfoot@anl.gov
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000329193500038 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1696
Permanent link to this record
 

 
Author Resta-Lopez, J.
Title Nonlinear protection of beam delivery systems for multi-TeV linear colliders Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P11010 - 19pp
Keywords Beam Optics; Beam dynamics; Accelerator Subsystems and Technologies; Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics)
Abstract The post-linac energy collimation system of future e(+)e(-) multi-TeV linear colliders is designed to fulfil an essential function of protection of the Beam Delivery System (BDS) against miss-steered or errant beams likely generated by failure modes in the main linac. For the case of the Compact Linear Collider (CLIC), the energy collimators are required to withstand the impact of a full bunch train in case of failure. This condition makes the design of the energy collimation system especially challenging, if we take into account the need to dispose of an unprecedented transverse beam energy density per beam of the order of GJ/mm(2), when assuming the nominal CLIC beam parameters at 3 TeV centre-of-mass energy, which translates into an extremely high damage potential of uncontrolled beams. This leads to research activities involving new collimator materials and novel collimation techniques. The increase of the transverse spot size at the collimators using nonlinear magnets is a potential solution to guarantee the survival of the collimators. In this paper we present an alternative nonlinear optics based on a multipole magnet pair for energy collimation. In order to preserve an acceptable luminosity performance, we carefully study the general conditions for self-cancellation of optical aberrations between two multipoles. This nonlinear optics scheme is adapted to the requirements of the post-linac energy collimation system for the CLIC BDS, and its performance is investigated by means of beam tracking simulations. Although applied to the CLIC case, this nonlinear protection system could be adapted to other future colliders.
Address Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, Valencia 46071, Spain, Email: resta@ific.uv.es
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000329193500035 Approved no
Is ISI yes International Collaboration
Call Number IFIC @ pastor @ Serial 1697
Permanent link to this record
 

 
Author Villaescusa-Navarro, F.; Vogelsberger, M.; Viel, M.; Loeb, A.
Title Neutrino signatures on the high-transmission regions of the Lyman alpha forest Type Journal Article
Year 2013 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 431 Issue 4 Pages 3670-3677
Keywords neutrinos; intergalactic medium; quasars: absorption lines; cosmology: theory; large-scale structure of Universe
Abstract We quantify the impact of massive neutrinos on the statistics of low-density regions in the intergalactic medium as probed by the Lyman alpha forest at redshifts z = 2.2-4. Based on mock but realistic quasar (QSO) spectra extracted from hydrodynamic simulations with cold dark matter, baryons and neutrinos, we find that the probability distribution of weak Lyman alpha absorption features, as sampled by Lyman alpha flux regions at high transmissivity, is strongly affected by the presence of massive neutrinos. We show that systematic errors affecting the Lyman alpha forest reduce but do not erase the neutrino signal. Using the Fisher matrix formalism, we conclude that the sum of the neutrino masses can be measured, using the method proposed in this paper, with a precision smaller than 0.4 eV using a catalogue of 200 high-resolution (signal-to-noise ratio similar to 100) QSO spectra. This number reduces to 0.27 eV by making use of reasonable priors in the other parameters that also affect the statistics of the high-transitivity regions of the Lyman alpha forest. The constraints obtained with this method can be combined with independent bounds from the cosmic microwave background, large-scale structures and measurements of the matter power spectrum from the Lyman alpha forest to produce tighter upper limits on the sum of the masses of the neutrinos.
Address Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain, Email: viel@oats.inaf.it
Corporate Author Thesis
Publisher (up) Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000319479000057 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1458
Permanent link to this record
 

 
Author Manera, M.; Scoccimarro, R.; Percival, W.J.; Samushia, L.; McBride, C.K.; Ross, A.J.; Sheth, R.K.; White, M.; Reid, B.A.; Sanchez, A.G.; de Putter, R.; Xu, X.Y.; Berlind, A.A.; Brinkmann, J.; Maraston, C.; Nichol, B.; Montesano, F.; Padmanabhan, N.; Skibba, R.A.; Tojeiro, R.; Weaver, B.A.
Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: a large sample of mock galaxy catalogues Type Journal Article
Year 2013 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 428 Issue 2 Pages 1036-1054
Keywords galaxies: haloes; large-scale structure of Universe
Abstract We present a fast method for producing mock galaxy catalogues that can be used to compute the covariance of large-scale clustering measurements and test analysis techniques. Our method populates a second-order Lagrangian perturbation theory (2LPT) matter field, where we calibrate masses of dark matter haloes by detailed comparisons with N-body simulations. We demonstrate that the clustering of haloes is recovered at similar to 10 per cent accuracy. We populate haloes with mock galaxies using a halo occupation distribution (HOD) prescription, which has been calibrated to reproduce the clustering measurements on scales between 30 and 80 h(-1) Mpc. We compare the sample covariance matrix from our mocks with analytic estimates, and discuss differences. We have used this method to make catalogues corresponding to Data Release 9 of the Baryon Oscillation Spectroscopic Survey (BOSS), producing 600 mock catalogues of the 'CMASS' galaxy sample. These mocks have enabled detailed tests of methods and errors, and have formed an integral part of companion analyses of these galaxy data.
Address Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England, Email: marc.manera@port.ac.uk
Corporate Author Thesis
Publisher (up) Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000318229000007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1471
Permanent link to this record
 

 
Author Vincent, A.C.; Scott, P.; Trampedach, R.
Title Light bosons in the photosphere and the solar abundance problem Type Journal Article
Year 2013 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 432 Issue 4 Pages 3332-3339
Keywords elementary particles; line: formation; Sun: abundances; Sun: atmosphere; cosmology: theory
Abstract Spectroscopy is used to measure the elemental abundances in the outer layers of the Sun, whereas helioseismology probes the interior. It is well known that current spectroscopic determinations of the chemical composition are starkly at odds with the metallicity implied by helioseismology. We investigate whether the discrepancy may be due to conversion of photons to a new light boson in the solar photosphere. We examine the impact of particles with axion-like interactions with the photon on the inferred photospheric abundances, showing that resonant axion-photon conversion is not possible in the region of the solar atmosphere in which line formation occurs. Although non-resonant conversion in the line-forming regions can in principle impact derived abundances, constraints from axion-photon conversion experiments rule out the couplings necessary for these effects to be detectable. We show that this extends to hidden photons and chameleons (which would exhibit similar phenomenological behaviour), ruling out known theories of new light bosons as photospheric solutions to the solar abundance problem.
Address [Vincent, A. C.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain, Email: vincent@ific.uv.es
Corporate Author Thesis
Publisher (up) Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000321053500058 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1481
Permanent link to this record