toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author NEXT Collaboration (Adams, C. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 164 - 24pp  
  Keywords Dark Matter and Double Beta Decay (experiments)  
  Abstract The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta (0 nu beta beta) decay of Xe-136 using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of 0 nu beta beta decay better than 10(27) years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond.  
  Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000694208600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4967  
Permanent link to this record
 

 
Author Alvarez Melcon, A. et al; Gimeno, B. url  doi
openurl 
  Title First results of the CAST-RADES haloscope search for axions at 34.67 μeV Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 075 - 16pp  
  Keywords Dark matter; Dark Matter and Double Beta Decay (experiments); Exotics  
  Abstract We present results of the Relic Axion Dark-Matter Exploratory Setup (RADES), a detector which is part of the CERN Axion Solar Telescope (CAST), searching for axion dark matter in the 34.67 μeV mass range. A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry. An exclusion limit with a 95% credibility level on the axion-photon coupling constant of g(a gamma) greater than or similar to 4 x 10(-13) GeV-1 over a mass range of 34.6738 μeV < m(a)< 34.6771 μeV is set. This constitutes a significant improvement over the current strongest limit set by CAST at this mass and is at the same time one of the most sensitive direct searches for an axion dark matter candidate above the mass of 25 μeV. The results also demonstrate the feasibility of exploring a wider mass range around the value probed by CAST-RADES in this work using similar coherent resonant cavities.  
  Address [Alvarez Melcon, A.; Diaz-Morcillo, A.; Garcia Barcelo, J. M.; Lozano-Guerrero, A. J.; Navarro, P.] Tech Univ Cartagena, Dept Informat & Commun Technol, Murcia 30203, Spain, Email: sergio.arguedas.cuendis@cern.ch;  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000705229500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4993  
Permanent link to this record
 

 
Author NEXT Collaboration (Novella, P. et al); Carcel, S.; Carrion, J.V.; Lopez, F.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A. url  doi
openurl 
  Title Demonstration of neutrinoless double beta decay searches in gaseous xenon with NEXT Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 190 - 35pp  
  Keywords Dark Matter and Double Beta Decay (experiments); Rare Decay  
  Abstract The NEXT experiment aims at the sensitive search of the neutrinoless double beta decay in Xe-136, using high-pressure gas electroluminescent time projection chambers. The NEXT-White detector is the first radiopure demonstrator of this technology, operated in the Laboratorio Subterr & aacute;neo de Canfranc. Achieving an energy resolution of 1% FWHM at 2.6 MeV and further background rejection by means of the topology of the reconstructed tracks, NEXT-White has been exploited beyond its original goals in order to perform a neu-trinoless double beta decay search. The analysis considers the combination of 271.6 days of Xe-136-enriched data and 208.9 days of 136Xe-depleted data. A detailed background mod-eling and measurement has been developed, ensuring the time stability of the radiogenic and cosmogenic contributions across both data samples. Limits to the neutrinoless mode are obtained in two alternative analyses: a background-model-dependent approach and a novel direct background-subtraction technique, offering results with small dependence on the background model assumptions. With a fiducial mass of only 3.50 +/- 0.01 kg of Xe-136-enriched xenon, 90% C.L. lower limits to the neutrinoless double beta decay are found in the T-1/2(0 nu) > 5.5x10(23) -1.3x10(24) yr range, depending on the method. The presented techniques stand as a pro of-of-concept for the searches to be implemented with larger NEXT detectors.  
  Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA, Email: pau.novella@ific.uv.es  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001085073500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5798  
Permanent link to this record
 

 
Author Valle, J.W.F. url  doi
openurl 
  Title Status and implications of neutrino masses: a brief panorama Type Journal Article
  Year 2015 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 30 Issue 13 Pages 1530034 - 13pp  
  Keywords Neutrino mixing and oscillations; seesaw mechanism; quark-lepton unification; flavor symmetry; electroweak symmetry breaking; neutrinoless double beta decay; dark matter; inflation  
  Abstract With the historic discovery of the Higgs boson our picutre of particle physics would have been complete were it nor for the neutrino sector and cosmology. I briefly discuss the role of neutrino masses and mixing upon gauge coupling unification, electroweak breaking and the flavor sector. Time is ripe for new discoveries such as leptonic CP violation, charged lepton flavor violation and neutrinoless double beta decay. Neutrinos could also play a role is elucidating the nature of dark matter and cosmic inflation.  
  Address Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain  
  Corporate Author Thesis  
  Publisher (up) World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000353955400002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2211  
Permanent link to this record
 

 
Author Centelles Chulia, S.; Trautner, A. url  doi
openurl 
  Title Asymmetric tri-bi-maximal mixing and residual symmetries Type Journal Article
  Year 2020 Publication Modern Physics Letters A Abbreviated Journal Mod. Phys. Lett. A  
  Volume 35 Issue 35 Pages 2050292 - 15pp  
  Keywords CP symmetry; CP violation; tri-bi-maximal mixing; asymmetrix texture; grand unification; neutrino masses; neutrino mixing; neutrinoless double beta decay  
  Abstract Asymmetric tri-bi-maximal mixing is a recently proposed, grand unified theory (GUT) based, flavor mixing scheme. In it, the charged lepton mixing is fixed by the GUT connection to down-type quarks and a T-13 flavor symmetry, while neutrino mixing is assumed to be tri-bi-maximal (TBM) with one additional free phase. Here we show that this additional free phase can be fixed by the residual flavor and CP symmetries of the effective neutrino mass matrix. We discuss how those residual symmetries can be unified with T-13 and identify the smallest possible unified flavor symmetries, namely (Z(13)xZ(13))(sic)D-12 and (Z(13)xZ(13))(sic)S-4. Sharp predictions are obtained for lepton mixing angles, CP violating phases and neutrinoless double beta decay.  
  Address [Chulia, Salvador Centelles] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran,2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-7323 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000599872300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4648  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva