DUNE Collaboration(Abi, B. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2021). Searching for solar KDAR with DUNE. J. Cosmol. Astropart. Phys., 10(10), 065–28pp.
Abstract: The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions.
|
DUNE Collaboration(Abud, A. A. et al), Amedo, P., Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., et al. (2023). Highly-parallelized simulation of a pixelated LArTPC on a GPU. J. Instrum., 18(4), P04034–35pp.
Abstract: The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype.
|
Balaudo, A., Calore, F., De Romeri, V., & Donato, F. (2024). NAJADS: a self-contained framework for the direct determination of astrophysical J-factors. J. Cosmol. Astropart. Phys., 02(2), 001–33pp.
Abstract: Cosmological simulations play a pivotal role in understanding the properties of the dark matter (DM) distribution in both galactic and galaxy -cluster environments. The characterization of DM structures is crucial for informing indirect DM searches, aiming at the detection of the annihilation (or decay) products of DM particles. A fundamental quantity in these analyses is the astrophysical J -factor. In the DM phenomenology community, J -factors are typically computed through the semi -analytical modelling of the DM mass distribution, which is affected by large uncertainties. With the scope of addressing and possibly reducing these uncertainties, we present NAJADS, a self-contained framework to derive the DM J -factor directly from the raw simulations data. We show how this framework can be used to compute all -sky maps of the J -factor, automatically accounting for the complex 3D structure of the simulated halos and for the boosting of the signal due to the density fluctuations along the line of sight. After validating our code, we present a proof -of -concept application of NAJADS to a realistic halo from the IllustrisTNG suite, and exploit it to make a thorough comparison between our numerical approach and traditional semi -analytical methods. JCAP02(2024)001
|
De Romeri, V., Majumdar, A., Papoulias, D. K., & Srivastava, R. (2024). XENONnT and LUX-ZEPLIN constraints on DSNB-boosted dark matter. J. Cosmol. Astropart. Phys., 03(3), 028–34pp.
Abstract: We consider a scenario in which dark matter particles are accelerated to semirelativistic velocities through their scattering with the Diffuse Supernova Neutrino Background. Such a subdominant, but more energetic dark matter component can be then detected via its scattering on the electrons and nucleons inside direct detection experiments. This opens up the possibility to probe the sub -GeV mass range, a region of parameter space that is usually not accessible at such facilities. We analyze current data from the XENONnT and LUX-ZEPLIN experiments and we obtain novel constraints on the scattering cross sections of sub -GeV boosted dark matter with both nucleons and electrons. We also highlight the importance of carefully taking into account Earth's attenuation effects as well as the finite nuclear size into the analysis. By comparing our results to other existing constraints, we show that these effects lead to improved and more robust constraints.
|
DUNE Collaboration(Abud, A. A. et al), Amar, H., Amedo, P., Antonova, M., Barenboim, G., Benitez Montiel, C., et al. (2024). The DUNE far detector vertical drift technology Technical design report. J. Instrum., 19(8), T08004–418pp.
Abstract: DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model.
The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise.
In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered.
This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals.
|