|   | 
Details
   web
Records
Author Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G.F.R.
Title Universal dual amplitudes and asymptotic expansions for gg -> H and H -> gamma gamma in four dimensions Type Journal Article
Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 78 Issue 3 Pages 231 - 7pp
Keywords
Abstract Though the one-loop amplitudes of the Higgs boson to massless gauge bosons are finite because there is no direct interaction at tree level in the Standard Model, a well-defined regularization scheme is still required for their correct evaluation. We reanalyze these amplitudes in the framework of the four-dimensional unsubtraction and the loop-tree duality (EDU/LTD), and show how a local renormalization solves potential regularization ambiguities. The Higgs boson interactions are also used to illustrate new additional advantages of this formalism. We show that LTD naturally leads to very compact integrand expressions in four space-time dimensions of the one-loop amplitude with virtual electroweak gauge bosons. They exhibit the same functional form as the amplitudes with top quarks and charged scalars, thus opening further possibilities for simplifications in higher-order computations. Another outstanding application is the straightforward implementation of asymptotic expansions by using dual amplitudes. One of the main benefits of the LTD representation is that it is supported in a Euclidean space. This characteristic feature naturally leads to simpler asymptotic expansions.
Address [Driencourt-Mangin, Felix; Rodrigo, German; Sborlini, German E. R.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, Valencia 46980, Spain, Email: felix.dm@ific.uv.es;
Corporate Author Thesis
Publisher (down) Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000427624100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3525
Permanent link to this record
 

 
Author Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.
Title Universal four-dimensional representation of H -> gamma gamma at two loops through the Loop-Tree Duality Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 143 - 39pp
Keywords Scattering Amplitudes; Higgs Physics; Perturbative QCD
Abstract We extend useful properties of the H unintegrated dual amplitudes from one- to two-loop level, using the Loop-Tree Duality formalism. In particular, we show that the universality of the functional form regardless of the nature of the internal particle still holds at this order. We also present an algorithmic way to renormalise two-loop amplitudes, by locally cancelling the ultraviolet singularities at integrand level, thus allowing a full four-dimensional numerical implementation of the method. Our results are compared with analytic expressions already available in the literature, finding a perfect numerical agreement. The success of this computation plays a crucial role for the development of a fully local four-dimensional framework to compute physical observables at Next-to-Next-to Leading order and beyond.
Address [Driencourt-Mangin, Felix; Rodrigo, German; Sborlini, German F. R.; Bobadilla, William J. Torres] Univ Valencia, CSIC, IFIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: felix.dm@ific.uv.es;
Corporate Author Thesis
Publisher (down) Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000459485300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3922
Permanent link to this record
 

 
Author FCC Collaboration (Abada, A. et al); Aguilera-Verdugo, J.J.; Hernandez, P.; Ramirez-Uribe, N.S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Valle, J.W.F.
Title FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1 Type Journal Article
Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 79 Issue 6 Pages 474 - 161pp
Keywords
Abstract We review the physics opportunities of the Future Circular Collider, covering its e(+)e(-), pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics.
Address [Apyan, Arm.] A Alikhanyan Natl Sci Lab YerPhi, Yerevan, Armenia
Corporate Author Thesis
Publisher (down) Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000470335500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4049
Permanent link to this record
 

 
Author Aguilera-Verdugo, J.J.; Driencourt-Mangin, F.; Plenter, J.; Ramirez-Uribe, S.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.; Tracz, S.
Title Causality, unitarity thresholds, anomalous thresholds and infrared singularities from the loop-tree duality at higher orders Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 163 - 12pp
Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes
Abstract We present the first comprehensive analysis of the unitarity thresholds and anomalous thresholds of scattering amplitudes at two loops and beyond based on the loop- tree duality, and show how non-causal unphysical thresholds are locally cancelled in an efficient way when the forest of all the dual on-shell cuts is considered as one. We also prove that soft and collinear singularities at two loops and beyond are restricted to a compact region of the loop three-momenta, which is a necessary condition for implementing a local cancellation of loop infrared singularities with the ones appearing in real emission; without relying on a subtraction formalism.
Address [Aguilera-Verdugo, J. Jesus; Driencourt-Mangin, Felix; Plenter, Judith; Ramirez-Uribe, Selomit; Rodrigo, German; Sborlini, German F. R.; Torres Bobadilla, William J.; Tracz, Szymon] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: jesus.aguilera@ific.uv.es;
Corporate Author Thesis
Publisher (down) Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000513535500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4288
Permanent link to this record
 

 
Author Aguilera-Verdugo, J.J.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.
Title Causal representation of multi-loop Feynman integrands within the loop-tree duality Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 69 - 26pp
Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes
Abstract The numerical evaluation of multi-loop scattering amplitudes in the Feynman representation usually requires to deal with both physical (causal) and unphysical (non-causal) singularities. The loop-tree duality (LTD) offers a powerful framework to easily characterise and distinguish these two types of singularities, and then simplify analytically the underling expressions. In this paper, we work explicitly on the dual representation of multi-loop Feynman integrals generated from three parent topologies, which we refer to as Maximal, Next-to-Maximal and Next-to-Next-to-Maximal loop topologies. In particular, we aim at expressing these dual contributions, independently of the number of loops and internal configurations, in terms of causal propagators only. Thus, providing very compact and causal integrand representations to all orders. In order to do so, we reconstruct their analytic expressions from numerical evaluation over finite fields. This procedure implicitly cancels out all unphysical singularities. We also interpret the result in terms of entangled causal thresholds. In view of the simple structure of the dual expressions, we integrate them numerically up to four loops in integer space-time dimensions, taking advantage of their smooth behaviour at integrand level.
Address [Jesus Aguilera-Verdugo, J.; Rodrigo, German; Sborlini, German F. R.; Torres Bobadilla, William J.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif, E-46980 Valencia, Spain, Email: jesus.aguilera@ific.uv.es;
Corporate Author Thesis
Publisher (down) Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000609437600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4697
Permanent link to this record