|   | 
Details
   web
Records
Author Martin-Luna, P.; Gimeno, B.; Gonzalez-Iglesias, D.; Esperante, D.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Fuster, J.
Title On the Magnetic Field of a Finite Solenoid Type Journal Article
Year 2023 Publication IEEE Transactions on Magnetics Abbreviated Journal IEEE Trans. Magn.
Volume 59 Issue 4 Pages 7000106 - 6pp
Keywords Solenoids; Magnetic fields; Integral equations; Magnetostatics; Magnetostatic waves; Particle beams; NASA; Elliptic integrals; finite solenoid; magnetostatics
Abstract The magnetostatic field of a finite solenoid with infinitely thin walls carrying a dc current oriented in the azimuthal direction is calculated everywhere in space in terms of complete elliptic integrals by direct integration of the Biot-Savart law. The solution is particularized near the solenoid axis and in the midplane perpendicular to the axis obtaining expressions that agree with some typical approximations that are made in introductory courses of electromagnetism or in the technical literature. The range of validity of these approximations has been studied comparing them with the obtained general expression.
Address [Martin-Luna, P.; Gimeno, B.; Gonzalez-Iglesias, D.; Esperante, D.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Fuster, J.] Univ Valencia, Inst Corpuscular Phys IFIC, CSIC, Paterna 46980, Spain, Email: Pablo.Martin@uv.es
Corporate Author Thesis
Publisher (up) Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9464 ISBN Medium
Area Expedition Conference
Notes WOS:001006992700005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5552
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Diaz, A.; Alves Garre, S.; Carretero, V.; Sanchez Losa, A.; Salesa Greus, F.
Title An Ultra-Narrow Time Optical Pulse Emitter Based on a Laser: UNTOPEL Type Journal Article
Year 2023 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 70 Issue 10 Pages 2364-2372
Keywords Instrumentation electronics; neutrino telescope instrumentation; subnanosecond light source; time calibration instrument
Abstract Light sources that emit repetitive subnanosecond pulses are used in neutrino telescopes for time calibration. Optical pulses with an ultra-narrow (subnanosecond) width can replicate the light produced by neutrino interactions, and are an important calibration and test element. By measuring the time-of-flight of the light, it is possible to provide a relative time calibration for all the detector photomultipliers. This work presents the ultra-narrow time optical pulse emitter based on a laser (UNTOPEL), an instrument emitting ultra-short laser optical pulses with a duration of 500 ps, energies per pulse of four microjoules at a wavelength of 532 nm, and a timing precision of 400 ps. The UNTOPEL pulse intensity can be fine-tuned, which is a novelty and a significant advantage in those applications that need to illuminate light detectors located at different distances with the same light intensity. The UNTOPEL pulse intensity can be controlled remotely, allowing for its use in operating conditions where physical access is impossible or difficult. Moreover, it is easy to operate and can be easily controlled through an inter-integrated circuit bus. The UNTOPEL is a sound instrument used when subnanosecond pulses and variable energy emissions are needed.
Address [Real, Diego; Calvo, David; Garre, Sergio Alves; Carretero, Victor; Losa, Agustin Sanchez; Greus, FranciscoSalesa] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: real@ific.uv.es
Corporate Author Thesis
Publisher (up) Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:001098078200010 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5795
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title Detailed Analysis of the TeV gamma-Ray Sources 3HWC J1928+178, 3HWC J1930+188, and the New Source HAWC J1932+192 Type Journal Article
Year 2023 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 942 Issue 2 Pages 96 - 18pp
Keywords
Abstract The latest High Altitude Water Cherenkov (HAWC) point-like source catalog up to 56 TeV reported the detection of two sources in the region of the Galactic plane at galactic longitude 52 degrees < l < 55 degrees, 3HWC J1930+188 and 3HWC J1928+178. The first one is associated with a known TeV source, the supernova remnant SNR G054.1+00.3. It was discovered by one of the currently operating Imaging Atmospheric Cherenkov Telescope (IACT), the Very Energetic Radiation Imaging Telescope Array System (VERITAS), detected by the High Energy Stereoscopic System (H.E.S.S), and identified as a composite SNR. However, the source 3HWC J1928+178, discovered by HAWC and coincident with the pulsar PSR J1928+1746, was not detected by any IACT despite their long exposure on the region, until a recent new analysis of H.E.S.S. data was able to confirm it. Moreover, no X-ray counterpart has been detected from this pulsar. We present a multicomponent fit of this region using the latest HAWC data. This reveals an additional new source, HAWC J1932+192, which is potentially associated with the pulsar PSR J1932+1916, whose gamma-ray emission could come from the acceleration of particles in its pulsar wind nebula. In the case of 3HWC J1928+178, several possible explanations are explored, in an attempt to unveil the origins of the very-high-energy gamma-ray emission.
Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: armelle.jardin-blicq@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher (up) IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000942614000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5484
Permanent link to this record
 

 
Author Molina, R.; Ikeno, N.; Oset, E.
Title Sequential single pion production explaining the dibaryon “d*(2380)” peak Type Journal Article
Year 2023 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 47 Issue 4 Pages 041001 - 10pp
Keywords dibaryon; sequential mechanism; explanation
Abstract In this study, we investigate the two step sequential one pion production mechanism, that is, np(I=0)->pi(-)pp followed by the fusion reaction pp ->pi(+)d, to describe the np ->pi(+)pi(-)d reaction with in state I = 0 . In this reaction, a narrow peak identified with a “ d(2380) ” dibaryon has been previously observed. We discover that the second reaction step pp ->pi(+)d is driven by a triangle singularity that determines the position of the peak of the reaction and the high strength of the cross section. The combined cross section of these two mechanisms produces a narrow peak with a position, width, and strength, that are compatible with experimental observations within the applied approximations made. This novel interpretation of the peak accomplished without invoking a dibaryon explains why this peak has remained undetected in other reactions.
Address [Molina, R.; Ikeno, Natsumi; Oset, Eulogio] Univ Valencia, Ctr Mixto, Inst Invest Paterna, CSIC,Dept Fis Teor, Aptdo 22085, Valencia 46071, Spain, Email: Raquel.Molina@ific.uv.es;
Corporate Author Thesis
Publisher (up) IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000940915300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5485
Permanent link to this record
 

 
Author Abdullahi, A.M. et al; Lopez-Pavon, J.
Title The present and future status of heavy neutral leptons Type Journal Article
Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue 2 Pages 020501 - 100pp
Keywords Neutrinos; beyond the standard model; sterile neutrinos
Abstract The existence of nonzero neutrino masses points to the likely existence of multiple Standard Model neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as heavy neutral leptons (HNLs). In this white paper, we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological impacts. We discuss the importance of continuing to search for HNLs, and its potential impact on our understanding of key fundamental questions, and additionally we outline the future prospects for next-generation future experiments or upcoming accelerator run scenarios.
Address [Abdullahi, Asli M.; Plestid, Ryan] Fermilab Natl Accelerator Lab, Theoret Phys Dept, POB 500, Batavia, IL 60510 USA, Email: shoemaker@vt.edu
Corporate Author Thesis
Publisher (up) IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000918351600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5486
Permanent link to this record