|   | 
Details
   web
Records
Author Gavela, M.B.; Lopez Honorez, L.; Mena, O.; Rigolin, S.
Title Dark coupling and gauge invariance Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 044 - 15pp
Keywords cosmological perturbation theory; dark energy theory; dark energy experiments
Abstract
Address [Gavela, M. B.; Lopez Honorez, L.] Univ Autonoma Madrid IFT UAM CSIC, Dept Fis Teor, Madrid 28049, Spain, Email: belen.gavela@uam.es
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000284825100044 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 316
Permanent link to this record
 

 
Author Agullo, I.; Navarro-Salas, J.; Olmo, G.J.; Parker, L.
Title Acceleration radiation, transition probabilities and trans-Planckian physics Type Journal Article
Year 2010 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 12 Issue Pages 095017 - 18pp
Keywords
Abstract An important question in the derivation of the acceleration radiation, which also arises in Hawking's derivation of black hole radiance, is the need to invoke trans-Planckian physics in describing the creation of quanta. We point out that this issue can be further clarified by reconsidering the analysis in terms of particle detectors, transition probabilities and local two-point functions. By writing down separate expressions for the spontaneous-and induced-transition probabilities of a uniformly accelerated detector, we show that the bulk of the effect comes from the natural (non-trans-Planckian) scale of the problem, which largely diminishes the importance of the trans-Planckian sector. This is so, at least, when trans-Planckian physics is defined in a Lorentz-invariant way. This analysis also suggests how one can define and estimate the role of trans-Planckian physics in the Hawking effect itself.
Address [Agullo, Ivan; Olmo, Gonzalo J.; Parker, Leonard] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA, Email: ivan.agullo@uv.es
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes ISI:000284766400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 318
Permanent link to this record
 

 
Author Carbone, C.; Mena, O.; Verde, L.
Title Cosmological parameters degeneracies and non-Gaussian halo bias Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 020 - 17pp
Keywords power spectrum; redshift surveys; galaxy clusters; cosmological parameters from LSS
Abstract We study the impact of the cosmological parameters uncertainties on the measurements of primordial non-Gaussianity through the large-scale non-Gaussian halo bias effect. While this is not expected to be an issue for the standard Lambda CDM model, it may not be the case for more general models that modify the large-scale shape of the power spectrum. We consider the so-called local non-Gaussianity model, parametrized by the f(NL) non-Gaussianity parameter which is zero for a Gaussian case, and make forecasts on f(NL) from planned surveys, alone and combined with a Planck CMB prior. In particular, we consider EUCLID- and LSST-like surveys and forecast the correlations among f(NL) and the running of the spectral index alpha(s), the dark energy equation of state w, the effective sound speed of dark energy perturbations c(s)(2), the total mass of massive neutrinos M-nu = Sigma m(nu), and the number of extra relativistic degrees of freedom N-nu(rel). Neglecting CMB information on f(NL) and scales k > 0.03h/Mpc, we find that, if N-nu(rel) is assumed to be known, the uncertainty on cosmological parameters increases the error on f(NL) by 10 to 30% depending on the survey. Thus the f(NL) constraint is remarkable robust to cosmological model uncertainties. On the other hand, if N-nu(rel) is simultaneously constrained from the data, the f(NL) error increases by similar to 80%. Finally, future surveys which provide a large sample of galaxies or galaxy clusters over a volume comparable to the Hubble volume can measure primordial non-Gaussianity of the local form with a marginalized 1-sigma error of the order Delta f(NL) similar to 2 – 5, after combination with CMB priors for the remaining cosmological parameters. These results are competitive with CMB bispectrum constraints achievable with an ideal CMB experiment.
Address [Carbone, Carmelita] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy, Email: carmelita.carbone@unibo.it
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000283573200010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 347
Permanent link to this record
 

 
Author Girones, Z.; Marchetti, A.; Mena, O.; Pena-Garay, C.; Rius, N.
Title Cosmological data analysis of f(R) gravity models Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 004 - 18pp
Keywords modified gravity; cosmological parameters from LSS
Abstract A class of well-behaved modified gravity models with long enough matter domination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS, BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of structure. We show that the combination of geometrical probes and growth data exploited here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature model. We also apply solar system tests to the models in agreement with the cosmological data. We find that the exponential of the inverse of the curvature model satisfies all the observational tests considered and we derive the allowed range of parameters. Current data still allows for small deviations of Einstein gravity. Future, high precision growth data, in combination with expansion history data, will be able to distinguish tiny modifications of standard gravity from the Lambda CDM model.
Address [Girones, Z.; Marchetti, A.; Mena, O.; Pena-Garay, C.; Rius, N.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Valencia 46071, Spain, Email: girones@ific.uv.es
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000284825100004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 315
Permanent link to this record
 

 
Author de Vega, I.; Bañuls, M.C.; Perez, A.
Title Effects of dissipation on an adiabatic quantum search algorithm Type Journal Article
Year 2010 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 12 Issue Pages 123010 - 19pp
Keywords
Abstract According to recent studies (Amin et al 2008 Phys. Rev. Lett. 100 060503), the effect of a thermal bath may improve the performance of a quantum adiabatic search algorithm. In this paper, we compare the effects of such a thermal environment on the algorithm performance with those of a structured environment similar to the one encountered in systems coupled to an electromagnetic field that exists within a photonic crystal. Whereas for all the parameter regimes explored here, the algorithm performance is worsened by contact with a thermal environment, the picture appears to be different when one considers a structured environment. In this case we show that by tuning the environment parameters to certain regimes, the algorithm performance can actually be improved with respect to the closed system case. Additionally, the relevance of considering the dissipation rates as complex quantities is discussed in both cases. More specifically, we find that the imaginary part of the rates cannot be neglected with the usual argument that it simply amounts to an energy shift and in fact influences crucially the system dynamics.
Address [de Vega, Ines] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany, Email: ines.devega@uni-ulm.de
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes ISI:000285582800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 303
Permanent link to this record