toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author AGATA Collaboration (Lalovic, N. et al); Gadea, A.; Domingo-Pardo, C. doi  openurl
  Title Study of isomeric states in Pb-198, Pb-200, Pb-202, Pb-206 and Hg-206 populated in fragmentation reactions Type Journal Article
  Year 2018 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 45 Issue 3 Pages 035105 - 27pp  
  Keywords gamma-ray spectroscopy; relativistic projectile fragmentation; direct reactions; isomeric decays; electromagnetic transitions; nuclear shell model  
  Abstract Isomeric states in isotopes in the vicinity of doubly-magic Pb-208 were populated following reactions of a relativistic Pb-208 primary beam impinging on a Be-9 fragmentation target. Secondary beams of Pb-198,Pb-200,Pb-202,Pb-206 and Hg-206 were isotopically separated and implanted in a passive stopper positioned in the focal plane of the GSI Fragment Separator. Delayed gamma rays were detected with the Advanced Gamma Tracking Array (AGATA). Decay schemes were reevaluated and interpreted with shell-model calculations. The momentum-dependent population of isomeric states in the two-nucleon hole nuclei Pb-206/Hg-206 was found to differ from the population of multi neutron-hole isomeric states in Pb-198,Pb-200,Pb-202.  
  Address [Lalovic, N.; Rudolph, D.; Sarmiento, L. G.; Golubev, P.; Fahlander, C.; Gellanki, J.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden, Email: Natasa.Lalovic@nuclear.lu.se  
  Corporate Author Thesis  
  Publisher (down) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000424906600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3488  
Permanent link to this record
 

 
Author Agostini, P. et al; Mandal, S. url  doi
openurl 
  Title The Large Hadron-Electron Collider at the HL-LHC Type Journal Article
  Year 2021 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 48 Issue 11 Pages 110501 - 364pp  
  Keywords deep-inelastic scattering; high-lumi LHC; QCD; Higgs; top and electroweak physics; nuclear physics; beyond Standard Model; energy-recovery-linac; accelerator physics  
  Abstract The Large Hadron-Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operations. This report represents an update to the LHeC's conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton-nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron-hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.  
  Address [Agostini, P.; Armesto, N.; Ferreiro, E. G.; Salgado, C. A.] Univ Santiago de Compostela USC, Santiago De Compostela, Spain, Email: britzger@mpp.mpg.de;  
  Corporate Author Thesis  
  Publisher (down) IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000731762500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5067  
Permanent link to this record
 

 
Author Sajjad Athar, M.; Ruiz Simo, I.; Vicente Vacas, M.J. url  doi
openurl 
  Title Nuclear medium modification of the F2(x, Q^2) structure function Type Journal Article
  Year 2011 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 857 Issue 1 Pages 29-41  
  Keywords Structure function; Nuclear medium effects; Deep inelastic scattering; Local density approximation  
  Abstract We study the nuclear effects in the electromagnetic structure function F-2(x, Q(2)) in the deep inelastic lepton nucleus scattering process by taking into account Fermi motion, binding, pion and rho meson cloud contributions. Calculations have been done in a local density approximation using relativistic nuclear spectral functions which include nucleon correlations. The ratios R-F2(A) (x, Q(2)) = 2F(2)(A)(x, Q(2))/AF(2)(D)(x, Q(2)) are obtained and compared with recent JLab results for light nuclei with special attention to the slope of the x distributions. This magnitude shows a non-trivial A dependence and it is insensitive to possible normalization uncertainties. The results have also been compared with some of the older experiments using intermediate mass nuclei.  
  Address [Athar, M. Sajjad] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India, Email: sajathar@gmail.com  
  Corporate Author Thesis  
  Publisher (down) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290607500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 627  
Permanent link to this record
 

 
Author Sahin, E. et al; Gadea, A.; Algora, A. doi  openurl
  Title Structure of the N=50 As, Ge, Ga nuclei Type Journal Article
  Year 2012 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 893 Issue Pages 1-12  
  Keywords NUCLEAR REACTIONS U-238(Se-82, Ga-81), (Se-82, Ge-82), (Se-82, As-83), E=515 MeV; measured E-gamma, I-gamma (theta), gamma gamma-coin, reaction fragments, (fragment)gamma-coin using PRISMA magnetic spectrometer, gamma after deexcitation using Ge Compton-suppressed detectors of CLARA array, thin and thick target; deduced sigma(theta), levels, J, pi; calculated levels, J, pi using shell model  
  Abstract The level structures of the N = 50 As-83, Ge-82, and Ga-81 isotones have been investigated by means of multi-nucleon transfer reactions. A first experiment was performed with the CLARA PRISMA setup to identify these nuclei. A second experiment was carried out with the GASP array in order to deduce the gamma-ray coincidence information. The results obtained on the high-spin states of such nuclei are used to test the stability of the N = 50 shell closure in the region of Ni-78 (Z = 28). The comparison of the experimental level schemes with the shell-model calculations yields an N = 50 energy gap value of 4.7(3) MeV at Z = 28. This value, in a good agreement with the prediction of the finite-range liquid-drop model as well as with the recent large-scale shell model calculations, does not support a weakening of the N = 50 shell gap down to Z = 28.  
  Address [Sahin, E.; de Angelis, G.; Gadea, A.; Corradi, L.; Fioretto, E.; Gottardo, A.; Guiot, B.; Modamio, V.; Napoli, D. R.; Silvestri, R.; Stefanini, A. M.; Valiente-Dobon, J. J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy, Email: eda.sahin@lnl.infn.it  
  Corporate Author Thesis  
  Publisher (down) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310091000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1191  
Permanent link to this record
 

 
Author Dote, A.; Bayar, M.; Xiao, C.W.; Hyodo, T.; Oka, M.; Oset, E. doi  openurl
  Title A narrow quasi-bound state of the DNN system Type Journal Article
  Year 2013 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 914 Issue Pages 499-504  
  Keywords Nuclear system with a D meson; Few-body system; Variational calculation; Faddeev calculation  
  Abstract We have investigated a charmed system of DNN (composed of two nucleons and a D meson) by a complementary study with a variational calculation and a Faddeev calculation with fixed-center approximation (Faddeev-FCA). In the present study, we employ a DN potential based on a vector-meson exchange picture in which a resonant A(c)(2595) is dynamically generated as a DN quasi-bound state, similarly to the A(1405) as a (K) over barN one in the strange sector. As a result of the study of variational calculation with an effective DN potential and three kinds of NN potentials, the DNN(J(pi) =0(-), I = 1/2) is found to be a narrow quasi-bound state below A(c)(2595)N threshold: total binding energy similar to 225 MeV and mesonic decay width similar to 25 MeV. On the other hand, the J(pi) =1(-) state is considered to be a scattering state of A(c)(2595) and a nucleon. These results are essentially supported by the Faddeev-FCA calculation. By the analysis of the variational wave function, we have found a unique structure in the DNN(J(pi) = 0, I = 1/2) such that the D meson stays around the center of the total system due to the heaviness of the D meson.  
  Address [Dote, A.] High Energy Accelerator Res Org KEK, IPNS, KEK Theory Ctr, Tsukuba, Ibaraki 3050801, Japan, Email: dote@post.kek.jp  
  Corporate Author Thesis  
  Publisher (down) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000324847700071 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1602  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva