toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title Multicenter solutions in Eddington-inspired Born-Infeld gravity Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 11 Pages 1018 - 13pp  
  Keywords  
  Abstract We find multicenter (Majumdar-Papapetrou type) solutions of Eddington-inspired Born-Infeld gravity coupled to electromagnetic fields governed by a Born-Infeld-like Lagrangian. We construct the general solution for an arbitrary number of centers in equilibrium and then discuss the properties of their one-particle configurations, including the existence of bounces and the regularity (geodesic completeness) of these spacetimes. Our method can be used to construct multicenter solutions in other theories of gravity.  
  Address [Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto Univ Valencia, CSIC, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;  
  Corporate Author Thesis  
  Publisher (down) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000590064800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4611  
Permanent link to this record
 

 
Author Delhom, A.; Nascimento, J.R.; Olmo, G.J.; Petrov, A.Y.; Porfirio, P.J. url  doi
openurl 
  Title Metric-affine bumblebee gravity: classical aspects Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 4 Pages 287 - 10pp  
  Keywords  
  Abstract We consider the metric-affine formulation of bumblebee gravity, derive the field equations, and show that the connection can be written as Levi-Civita of a disformally related metric in which the bumblebee field determines the disformal part. As a consequence, the bumblebee field gets coupled to all the other matter fields present in the theory, potentially leading to nontrivial phenomenological effects. To explore this issue we compute the post-Minkowskian, weak-field limit and study the resulting effective theory. In this scenario, we couple scalar and spinorial matter to the effective metric, and then we explore the physical properties of the VEV of the bumblebee field, focusing mainly on the dispersion relations and the stability of the resulting effective theory.  
  Address [Delhom, Adria; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto Univ Valencia, CSIC, Valencia 46100, Spain, Email: adria.delhom@uv.es;  
  Corporate Author Thesis  
  Publisher (down) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000636839400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4779  
Permanent link to this record
 

 
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Geodesic completeness of effective null geodesics in regular space-times with non-linear electrodynamics Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 9 Pages 785 - 8pp  
  Keywords  
  Abstract We study the completeness of light trajectories in certain spherically symmetric regular geometries found in Palatini theories of gravity threaded by non-linear (electromagnetic) fields, which makes their propagation to happen along geodesics of an effective metric. Two types of geodesic restoration mechanisms are employed: by pushing the focal point to infinite affine distance, thus unreachable in finite time by any sets of geodesics, or by the presence of a defocusing surface associated to the development of a wormhole throat. We discuss several examples of such geometries to conclude the completeness of all such effective paths. Our results are of interest both for the finding of singularity-free solutions and for the analysis of their optical appearances e.g. in shadow observations.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, Madrid 28040, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher (down) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001065963300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5710  
Permanent link to this record
 

 
Author Benisty, D.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Singularity-Free and Cosmologically Viable Born-Infeld Gravity with Scalar Matter Type Journal Article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 11 Pages 2108 - 24pp  
  Keywords metric-affine gravity; non-singular cosmologies; born-infeld gravity; observational constraints; scalar fields  
  Abstract The early cosmology, driven by a single scalar field, both massless and massive, in the context of Eddington-inspired Born-Infeld gravity, is explored. We show the existence of nonsingular solutions of bouncing and loitering type (depending on the sign of the gravitational theory's parameter, epsilon) replacing the Big Bang singularity, and discuss their properties. In addition, in the massive case, we find some new features of the cosmological evolution depending on the value of the mass parameter, including asymmetries in the expansion/contraction phases, or a continuous transition between a contracting phase to an expanding one via an intermediate loitering phase. We also provide a combined analysis of cosmic chronometers, standard candles, BAO, and CMB data to constrain the model, finding that for roughly |epsilon|& LSIM;5 & BULL;10-8m2 the model is compatible with the latest observations while successfully removing the Big Bang singularity. This bound is several orders of magnitude stronger than the most stringent constraints currently available in the literature.  
  Address [Benisty, David] Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England, Email: benidav@post.bgu.ac.il;  
  Corporate Author Thesis  
  Publisher (down) Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000726717400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5040  
Permanent link to this record
 

 
Author Agullo, I.; Navarro-Salas, J.; Olmo, G.J.; Parker, L. url  doi
openurl 
  Title Acceleration radiation, transition probabilities and trans-Planckian physics Type Journal Article
  Year 2010 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 12 Issue Pages 095017 - 18pp  
  Keywords  
  Abstract An important question in the derivation of the acceleration radiation, which also arises in Hawking's derivation of black hole radiance, is the need to invoke trans-Planckian physics in describing the creation of quanta. We point out that this issue can be further clarified by reconsidering the analysis in terms of particle detectors, transition probabilities and local two-point functions. By writing down separate expressions for the spontaneous-and induced-transition probabilities of a uniformly accelerated detector, we show that the bulk of the effect comes from the natural (non-trans-Planckian) scale of the problem, which largely diminishes the importance of the trans-Planckian sector. This is so, at least, when trans-Planckian physics is defined in a Lorentz-invariant way. This analysis also suggests how one can define and estimate the role of trans-Planckian physics in the Hawking effect itself.  
  Address [Agullo, Ivan; Olmo, Gonzalo J.; Parker, Leonard] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA, Email: ivan.agullo@uv.es  
  Corporate Author Thesis  
  Publisher (down) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284766400006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 318  
Permanent link to this record
 

 
Author Olmo, G.J. url  doi
openurl 
  Title Palatini actions and quantum gravity phenomenology Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 018 - 15pp  
  Keywords quantum gravity phenomenology; cosmic singularity  
  Abstract We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmologies of this model also avoid the big bang singularity by means of a big bounce.  
  Address [Olmo, GJ] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es  
  Corporate Author Thesis  
  Publisher (down) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296767600018 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 816  
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. url  doi
openurl 
  Title Cosmology of hybrid metric-Palatini f(X)-gravity Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 011 - 25pp  
  Keywords modified gravity; dark energy theory  
  Abstract A new class of modified theories of gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini was proposed recently. The dynamically equivalent scalar-tensor representation of the model was also formulated, and it was shown that even if the scalar field is very light, the theory passes the Solar System observational constraints. Therefore the model predicts the existence of a long-range scalar field, modifying the cosmological and galactic dynamics. An explicit model that passes the local tests and leads to cosmic acceleration was also obtained. In the present work, it is shown that the theory can be also formulated in terms of the quantity X equivalent to kappa T-2 + R, where T and R are the traces of the stress-energy and Ricci tensors, respectively. The variable X represents the deviation with respect to the field equation trace of general relativity. The cosmological applications of this hybrid metric-Palatini gravitational theory are also explored, and cosmological solutions coming from the scalar-tensor representation of f(X)-gravity are presented. Criteria to obtain cosmic acceleration are discussed and the field equations are analyzed as a dynamical system. Several classes of dynamical cosmological solutions, depending on the functional form of the effective scalar field potential, describing both accelerating and decelerating Universes are explicitly obtained. Furthermore, the cosmological perturbation equations are derived and applied to uncover the nature of the propagating scalar degree of freedom and the signatures these models predict in the large-scale structure.  
  Address Univ Naples Federico II, Dipartimento Fis, Naples, Italy, Email: capozzie@na.infn.it;  
  Corporate Author Thesis  
  Publisher (down) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000318556200011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1444  
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. url  doi
openurl 
  Title The virial theorem and the dark matter problem in hybrid metric-Palatini gravity Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 024 - 19pp  
  Keywords modified gravity; dark matter theory; galaxy clusters  
  Abstract Hybrid metric-Palatini gravity is a recently proposed theory, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini. The theory predicts the existence of a long-range scalar field, which passes the Solar System observational constraints, even if the scalar field is very light, and modifies the cosmological and galactic dynamics. Thus, the theory opens new possibilities to approach, in the same theoretical framework, the problems of both dark energy and dark matter. In this work, we consider the generalized virial theorem in the scalar-tensor representation of the hybrid metric-Palatini gravity. More specifically, taking into account the relativistic collisionless Boltzmann equation, we show that the supplementary geometric terms in the gravitational field equations provide an effective contribution to the gravitational potential energy. We show that the total virial mass is proportional to the effective mass associated with the new terms generated by the effective scalar field, and the baryonic mass. In addition to this, we also consider astrophysical applications of the model and show that the model predicts that the mass associated to the scalar field and its effects extend beyond the virial radius of the clusters of galaxies. In the context of the galaxy cluster velocity dispersion profiles predicted by the hybrid metric-Palatini model, the generalized virial theorem can be an efficient tool in observationally testing the viability of this class of generalized gravity models.  
  Address [Capozziello, Salvatore] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy, Email: capozzie@na.infn.it;  
  Corporate Author Thesis  
  Publisher (down) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000322582000025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1531  
Permanent link to this record
 

 
Author Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Semiclassical geons as solitonic black hole remnants Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 011 - 10pp  
  Keywords modified gravity; primordial black holes; Wormholes; quantum field theory on curved space  
  Abstract We find that the end state of black hole evaporation could be represented by non-singular and without event horizon stable solitonic remnants with masses of the order the Planck scale and up to similar to 16 units of charge. Though these objects are locally indistinguishable from spherically symmetric, massive electric (or magnetic) charges, they turn out to be sourceless geons containing a wormhole generated by the electromagnetic field. Our results are obtained by interpreting semiclassical corrections to Einstein's theory in the first-order (Palatini) formalism, which yields second-order equations and avoids the instabilities of the usual (metric) formulation of quadratic gravity. We also discuss the potential relevance of these solutions for primordial black holes and the dark matter problem.  
  Address [Lobo, Francisco S. N.] Univ Lisbon, Ctr Astron & Astrofis, P-1749016 Lisbon, Portugal, Email: flobo@cii.fc.ul.pt;  
  Corporate Author Thesis  
  Publisher (down) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000322582000012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1532  
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Semiclassical geons at particle accelerators Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 010 - 25pp  
  Keywords modified gravity; Wormholes; quantum black holes  
  Abstract We point out that in certain four-dimensional extensions of general relativity constructed within the Palatini formalism stable self-gravitating objects with a discrete mass and charge spectrum may exist. The incorporation of nonlinearities in the electromagnetic field may effectively reduce their mass spectrum by many orders of magnitude. As a consequence, these objects could be within (or near) the reach of current particle accelerators. We provide an exactly solvable model to support this idea.  
  Address [Omla, Gonzalo J.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;  
  Corporate Author Thesis  
  Publisher (down) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000332711400010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1733  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva