van Beekveld, M., Caron, S., Hendriks, L., Jackson, P., Leinweber, A., Otten, S., et al. (2021). Combining outlier analysis algorithms to identify new physics at the LHC. J. High Energy Phys., 09(9), 024–33pp.
Abstract: The lack of evidence for new physics at the Large Hadron Collider so far has prompted the development of model-independent search techniques. In this study, we compare the anomaly scores of a variety of anomaly detection techniques: an isolation forest, a Gaussian mixture model, a static autoencoder, and a beta-variational autoencoder (VAE), where we define the reconstruction loss of the latter as a weighted combination of regression and classification terms. We apply these algorithms to the 4-vectors of simulated LHC data, but also investigate the performance when the non-VAE algorithms are applied to the latent space variables created by the VAE. In addition, we assess the performance when the anomaly scores of these algorithms are combined in various ways. Using supersymmetric benchmark points, we find that the logical AND combination of the anomaly scores yielded from algorithms trained in the latent space of the VAE is the most effective discriminator of all methods tested.
|
Caron, S., Ruiz de Austri, R., & Zhang, Z. Y. (2023). Mixture-of-Theories training: can we find new physics and anomalies better by mixing physical theories? J. High Energy Phys., 03(3), 004–37pp.
Abstract: Model-independent search strategies have been increasingly proposed in recent years because on the one hand there has been no clear signal for new physics and on the other hand there is a lack of a highly probable and parameter-free extension of the standard model. For these reasons, there is no simple search target so far. In this work, we try to take a new direction and ask the question: bearing in mind that we have a large number of new physics theories that go beyond the Standard Model and may contain a grain of truth, can we improve our search strategy for unknown signals by using them “in combination”? In particular, we show that a signal hypothesis based on a large, intermingled set of many different theoretical signal models can be a superior approach to find an unknown BSM signal. Applied to a recent data challenge, we show that “mixture-of-theories training” outperforms strategies that optimize signal regions with a single BSM model as well as most unsupervised strategies. Applications of this work include anomaly detection and the definition of signal regions in the search for signals of new physics.
|
Caron, S., Dobreva, N., Ferrer Sanchez, A., Martin-Guerrero, J. D., Odyurt, U., Ruiz de Austri, R., et al. (2025). Trackformers: in search of transformer-based particle tracking for the high-luminosity LHC era. Eur. Phys. J. C, 85(4), 460–20pp.
Abstract: High-Energy Physics experiments are facing a multi-fold data increase with every new iteration. This is certainly the case for the upcoming High-Luminosity LHC upgrade. Such increased data processing requirements forces revisions to almost every step of the data processing pipeline. One such step in need of an overhaul is the task of particle track reconstruction, a.k.a., tracking. A Machine Learning-assisted solution is expected to provide significant improvements, since the most time-consuming step in tracking is the assignment of hits to particles or track candidates. This is the topic of this paper. We take inspiration from large language models. As such, we consider two approaches: the prediction of the next word in a sentence (next hit point in a track), as well as the one-shot prediction of all hits within an event. In an extensive design effort, we have experimented with three models based on the Transformer architecture and one model based on the U-Net architecture, performing track association predictions for collision event hit points. In our evaluation, we consider a spectrum of simple to complex representations of the problem, eliminating designs with lower metrics early on. We report extensive results, covering both prediction accuracy (score) and computational performance. We have made use of the REDVID simulation framework, as well as reductions applied to the TrackML data set, to compose five data sets from simple to complex, for our experiments. The results highlight distinct advantages among different designs in terms of prediction accuracy and computational performance, demonstrating the efficiency of our methodology. Most importantly, the results show the viability of a one-shot encoder-classifier based Transformer solution as a practical approach for the task of tracking.
|
Caron, S., Garcia Navarro, J. E., Moreno Llacer, M., Moskvitina, P., Rovers, M., Rubio Jimenez, A., et al. (2025). Universal anomaly detection at the LHC: transforming optimal classifiers and the DDD method. Eur. Phys. J. C, 85(4), 415–17pp.
Abstract: In this work, we present a novel approach to transform supervised classifiers into effective unsupervised anomaly detectors. The method we have developed, termed Discriminatory Detection of Distortions (DDD), enhances anomaly detection by training a discriminator model on both original and artificially modified datasets. We conducted a comprehensive evaluation of our models on the Dark Machines Anomaly Score Challenge channels and a search for 4-top quark events, demonstrating the effectiveness of our approach across various final states and beyond the Standard Model scenarios. We compare the performance of the DDD method with the Deep Robust One-Class Classification method (DROCC), which incorporates signals in the training process, and the Deep Support Vector Data Description (DeepSVDD) method, a well-established and well-performing method for anomaly detection. Results show that the effectiveness of each model varies by signal and channel, with DDD proving to be a very effective anomaly detector. We recommend the combined use of DeepSVDD and DDD for purely unsupervised applications, with the addition of flow models for improved performance when resources allow. Findings suggest that network architectures that excel in supervised contexts, such as the particle transformer with standard model interactions, also perform well as unsupervised anomaly detectors. We also show that with these methods, it is likely possible to recognize 4-top quark production as an anomaly without prior knowledge of the process. We argue that the Large Hadron Collider community can transform supervised classifiers into anomaly detectors to uncover potential new physical phenomena in each search.
|