|   | 
Details
   web
Records
Author Capozzi, F.; Ferreira, R.Z.; Lopez-Honorez, L.; Mena, O.
Title CMB and Lyman-alpha constraints on dark matter decays to photons Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 060 - 23pp
Keywords reionization; axions; cosmological parameters from CMBR; dark matter theory
Abstract Dark matter energy injection in the early universe modifies both the ionization history and the temperature of the intergalactic medium. In this work, we improve the CMB bounds on sub-keV dark matter and extend previous bounds from Lyman-& alpha; observations to the same mass range, resulting in new and competitive constraints on axion-like particles (ALPs) decaying into two photons. The limits depend on the underlying reionization history, here accounted self-consistently by our modified version of the publicly available DarkHistory and CLASS codes. Future measurements such as the ones from the CMB-S4 experiment may play a crucial, leading role in the search for this type of light dark matter candidates.
Address [Capozzi, Francesco] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy, Email: francesco.capozzi@univaq.it;
Corporate Author Thesis
Publisher (down) IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001025410500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5584
Permanent link to this record
 

 
Author Domcke, V.; Ema, Y.; Sandner, S.
Title Perturbatively including inhomogeneities in axion inflation Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 019 - 24pp
Keywords axions; inflation; particle physics- cosmology connection
Abstract Axion inflation, i.e. an axion-like inflaton coupled to an Abelian gauge field through a Chern-Simons interaction, comes with a rich and testable phenomenology. This is particularly true in the strong backreaction regime, where the gauge field production heavily impacts the axion dynamics. Lattice simulations have recently demonstrated the importance of accounting for inhomogeneities of the axion field in this regime. We propose a perturbative scheme to account for these inhomogeneities while maintaining high computational efficiency. Our goal is to accurately capture deviations from the homogeneous axion field approximation within the perturbative regime as well as self -consistently determine the onset of the nonperturbative regime.
Address [Domcke, Valerie] CERN, Theoret Phys Dept, Geneva 23, Switzerland, Email: valerie.domcke@cern.ch;
Corporate Author Thesis
Publisher (down) IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001185016600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6020
Permanent link to this record
 

 
Author Garcfa-Barcelo, J.M.; Melcon, A.A.; Cuendis, S.A.; Diaz-Morcillo, A.; Gimeno, B.; Kanareykin, A.; Lozano-Guerrero, A.J.; Navarro, P.; Wuensch, W.
Title On the Development of New Tuning and Inter-Coupling Techniques Using Ferroelectric Materials in the Detection of Dark Matter Axions Type Journal Article
Year 2023 Publication IEEE Access Abbreviated Journal IEEE Access
Volume 11 Issue Pages 30360-30372
Keywords Tuning; Couplings; Permittivity; Dark matter; Magnetic resonance; Cryogenics; Receivers; Ferroelectrics; Microwave devices; Axion detection; axion-photon interaction; dark matter; ferroelectrics; haloscope; KTO; microwave resonator; STO; tuning
Abstract Tuning is an essential requirement for the search of dark matter axions employing haloscopes since its mass is not known yet to the scientific community. At the present day, most haloscope tuning systems are based on mechanical devices which can lead to failures due to the complexity of the environment in which they are used. However, the electronic tuning making use of ferroelectric materials can provide a path that is less vulnerable to mechanical failures and thus complements and expands current tuning systems. In this work, we present and design a novel technique for using the ferroelectric Potassium Tantalate (KTaO3 or KTO) material as a tuning element in haloscopes based on coupled microwave cavities. In this line, the structures used in the Relic Axion Detector Exploratory Setup (RADES) group are based on several cavities that are connected by metallic irises, which act as interresonator coupling elements. In this article, we also show how to use these KTaO3 films as interresonator couplings between cavities, instead of inductive or capacitive metallic windows used in the past. These two techniques represent a crucial upgrade over the current systems employed in the dark matter axions community, achieving a tuning range of 2.23% which represents a major improvement as compared to previous works (<0.1%) for the same class of tuning systems. The theoretical and simulated results shown in this work demonstrate the interest of the novel techniques proposed for the incorporation of this kind of ferroelectric media in multicavity resonant haloscopes in the search for dark matter axions.
Address [Garcia-Barcelo, J. M.; Melcon, A. Alvarez; Diaz-Morcillo, A.; Lozano-Guerrero, A. J.; Navarro, P.] Tech Univ Cartagena, Dept Informat & Commun Technol, Cartagena 30203, Spain, Email: josemaria.garcia@upct.es
Corporate Author Thesis
Publisher (down) Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-3536 ISBN Medium
Area Expedition Conference
Notes WOS:000966674500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5513
Permanent link to this record
 

 
Author Jimenez, R.; Pena-Garay, C.; Verde, L.
Title Is it possible to explore Peccei-Quinn axions from frequency-dependence radiation dimming? Type Journal Article
Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 703 Issue 3 Pages 232-236
Keywords Axion; CF; White dwarf
Abstract We explore how the Peccei-Quinn (PQ) axion parameter space can be constrained by the frequency-dependence dimming of radiation from astrophysical objects. To do so we perform accurate calculations of photon-axion conversion in the presence of a variable magnetic field. We propose several tests where the PQ axion parameter space can be explored with current and future astronomical surveys: the observed spectra of isolated neutron stars, occultations of background objects by white dwarfs and neutron stars, the light-curves of eclipsing binaries containing a white dwarf. We find that the lack of dimming of the light-curve of a detached eclipsing white dwarf binary recently observed, leads to relevant constraints on the photon-axion conversion. Current surveys designed for Earth-like planet searches are well matched to strengthen and improve the constraints on the PQ axion using astrophysical objects radiation dimming.
Address [Jimenez, R; Verde, L] Univ Barcelona IEEC UB, ICREA & ICC, Barcelona 08028, Spain, Email: jimenez@icc.ub.edu
Corporate Author Thesis
Publisher (down) Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000295198300005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 779
Permanent link to this record
 

 
Author Dias, A.G.; Leite, J.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Reloading the axion in a 3-3-1 setup Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 810 Issue Pages 135829 - 12pp
Keywords Peccei-Quinn symmetry; Axion; Neutrinos
Abstract We generalize the idea of the axion to an extended electroweak gauge symmetry setup. We propose a minimal axion extension of the Singer-Valle-Schechter (SVS) theory, in which the standard model fits in SU(3)(L) circle times U(1)(X), the number of families results from anomaly cancellation, and the Peccei-Quinn (PQ) solution to the strong-CP problem is implemented. Neutrino masses arise from a type-I Dirac seesaw mechanism, suppressed by the ratio of SVS and PQ scales, suggesting the existence of new physics at a moderate SVS scale. Novel features include an enhanced axion coupling to photons when compared to the DFSZ axion, as well as flavor-changing axion couplings to quarks.
Address [Dias, Alex G.; Leite, Julio] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210580 Santo Andre, SP, Brazil, Email: alex.dias@ufabc.edu.br;
Corporate Author Thesis
Publisher (down) Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000582969900048 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4586
Permanent link to this record
 

 
Author Navarro, P.; Gimeno, B.; Alvarez Melcon, A.; Arguedas Cuendis, S.; Cogollos, C.; Diaz-Morcillo, A.; Gallego, J.D.; Garcia Barcelo, J.M.; Golm, J.; Irastorza, I.G.; Lozano Guerrero, A.J.; Garay, C.P.
Title Wide-band full-wave electromagnetic modal analysis of the coupling between dark-matter axions and photons in microwave resonators Type Journal Article
Year 2022 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 36 Issue Pages 101001 - 14pp
Keywords Axion detection; Axion field; Axion-photon interaction; BI-RME 3D; Broad-band analysis; Dark matter; Full wave analysis; Haloscope; Microwave resonator; Modal technique
Abstract The electromagnetic coupling axion-photon in a microwave cavity is revisited with the Boundary Integral-Resonant Mode Expansion (BI-RME) 3D technique. Such full-wave modal technique has been applied for the rigorous analysis of the excitation of a microwave cavity with an axion field. In this scenario, the electromagnetic field generated by the axion-photon coupling can be assumed to be driven by equivalent electrical charge and current densities. These densities have been inserted in the general BI-RME 3D equations, which express the RF electromagnetic field existing within a cavity as an integral involving the Dyadic Green's functions of the cavity (under Coulomb gauge) as well as such densities. This method is able to take into account any arbitrary spatial and temporal variation of both magnitude and phase of the axion field. Next, we have obtained a simple network driven by the axion current source, which represents the coupling between the axion field and the resonant modes of the cavity. With this approach, it is possible to calculate the extracted and dissipated RF power as a function of frequency along a broad band and without Cauchy-Lorentz approximations, obtaining the spectrum of the electromagnetic field generated in the cavity, and dealing with modes relatively close to the axion resonant mode. Moreover, with this technique we have a complete knowledge of the signal extracted from the cavity, not only in magnitude but also in phase. This can be an interesting issue for future analysis where the axion phase is an important parameter.
Address [Navarro, P.; Melcon, A. alvarez; Diaz-Morcillo, A.; Barcelo, J. M. Garcia; Guerrero, A. J. Lozano] Tech Univ Cartagena, Dept Informat & Commun Technol, Cartagena 30203, Spain, Email: pablonm.ct.94@gmail.com;
Corporate Author Thesis
Publisher (down) Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000791333100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5218
Permanent link to this record
 

 
Author Choi, K.Y.; Gong, J.O.; Joh, J.; Park, W.I.; Seto, O.
Title Light cold dark matter from non-thermal decay Type Journal Article
Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 845 Issue Pages 138126 - 8pp
Keywords Dark matter; Non-thermal production; Axion; Q-ball; Dark matter; Non-thermal production; Axion; Q-ball; Dark matter; Non-thermal production; Axion; Q-ball
Abstract We investigate the mass range and the corresponding free-streaming length scale of dark matter produced non-thermally from decay of heavy objects which can be either dominant or sub-dominant at the moment of decay. We show that the resulting dark matter could be very light well below keV scale with a free-streaming length satisfying the Lyman-alpha constraints. We demonstrate two explicit examples for such light cold dark matter.
Address [Choi, Ki-Young; Joh, Junghoon] Sungkyunkwan Univ, Dept Phys, Dept Phys, Suwon 16419, South Korea, Email: kiyoungchoi@skku.edu;
Corporate Author Thesis
Publisher (down) Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001155183100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5942
Permanent link to this record