|   | 
Details
   web
Records
Author Gomez-Cadenas, J.J.; Guinea, F.; Fogler, M.M.; Katsnelson, M.I.; Martin-Albo, J.; Monrabal, F.; Muñoz Vidal, J.
Title GraXe, graphene and xenon for neutrinoless double beta decay searches Type Journal Article
Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 037 - 17pp
Keywords neutrino experiments; double beta decay
Abstract We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in Xe-136. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, grapheme. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the Xe-136 isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to the xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope Xe-136 is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.
Address [Gomez-Cadenas, J. J.; Martin-Albo, J.; Monrabal, F.; Munoz Vidal, J.] CSIC, Inst Fis Corpuscular, IFIC, Valencia 46980, Spain, Email: gomez@mail.cern.ch;
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000301176000038 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 987
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P04002 - 25pp
Keywords Double-beta decay detectors; Time projection chambers; Pattern recognition, cluster finding, calibration and fitting methods
Abstract NEXT-DEMO is a large-scale prototype of the NEXT-100 detector, an electroluminescent time projection chamber that will search for the neutrinoless double beta decay of Xe-136 using 100-150 kg of enriched xenon gas. NEXT-DEMO was built to prove the expected performance of NEXT-100, namely, energy resolution better than 1% FWHM at 2.5MeV and event topological reconstruction. In this paper we describe the prototype and its initial results. A resolution of 1.75% FWHM at 511 keV (which extrapolates to 0.8% FWHM at 2.5 MeV) was obtained at 10 bar pressure using a gamma-ray calibration source. Also, a basic study of the event topology along the longitudinal coordinate is presented, proving that it is possible to identify the distinct dE/dx of electron tracks in high-pressure xenon using an electroluminescence TPC.
Address CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: justo.martin-albo@ific.uv.es
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000317462400009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1414
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Muñoz Vidal, J.; Pena-Garay, C.
Title Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 043 - 17pp
Keywords neutrino masses from cosmology; double beta decay
Abstract The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Sigma m(nu) = (0.32 +/- 0.11) eV. This result, if con firmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m(beta beta) involved in neutrinoless double beta decay (beta beta 0 nu) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based beta beta 0 nu experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg.year, could already have a sizeable opportunity to observe beta beta 0 nu events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton.year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely.
Address CSIC, Inst Fis Corpuscular, IFIC, Valencia 46090, Spain, Email: gomez@mail.cern.ch;
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000316989200044 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1434
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Ionization and scintillation response of high-pressure xenon gas to alpha particles Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P05025 - 35pp
Keywords Charge transport, multiplication and electroluminescence in rare gases and liquids; Gaseous detectors; Double-beta decay detectors; Ionization and excitation processes
Abstract High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.
Address [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Monrabal, F.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: sorel@ific.uv.es
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000320726000035 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1513
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P09011 - 20pp
Keywords Pattern recognition, cluster finding, calibration and fitting methods; Double-beta decay detectors; Particle tracking detectors (Gaseous detectors); Time projection chambers
Abstract NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and “blob” regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent energy resolution of 1.82% FWHM at 511 keV has been measured (a value which extrapolates to 0.83% at the xenon Q(beta beta)).
Address [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: andrew.laing@ific.uv.es;
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000326680200025 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1653
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Description and commissioning of NEXT-MM prototype: first results from operation in a Xenon-Trimethylamine gas mixture Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 9 Issue Pages P03010 - 22pp
Keywords Time projection chambers; Particle tracking detectors (Gaseous detectors); Double-beta decay detectors
Abstract A technical description of NEXT-MM and its commissioning and first performance is reported. Having an active volume of similar to 35 cm drift x 28 cm diameter, it constitutes the largest Micromegas-read TPC operated in Xenon ever constructed, made by a sectorial arrangement of the 4 largest single wafers manufactured with the Microbulk technique to date. It is equipped with a suitably pixelized readout and with a sufficiently large sensitive volume (similar to 23 l) so as to contain long (similar to 20 cm) electron tracks. First results obtained at 1 bar for Xenon and Trymethylamine (Xe-(2%) TMA) mixture are presented. The TPC can accurately reconstruct extended background tracks. An encouraging full-width half-maximum of 11.6% was obtained for similar to 29 keV gammas without resorting to any data post-processing.
Address [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: gomez@lal.in2p3.fr;
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000336123200070 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1800
Permanent link to this record
 

 
Author NEXT Collaboration (Lorca, D. et al); Martin-Albo, J.; Laing, A.; Ferrario, P.; Gomez-Cadenas, J.J.; Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Liubarsky, I.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Characterisation of NEXT-DEMO using xenon K-alpha X-rays Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 9 Issue Pages P10007 - 20pp
Keywords Charge transport, multiplication and electroluminescence in rare gases and liquids; Double-beta decay detectors; Time projection chambers
Abstract The NEXT experiment aims to observe the neutrinoless double beta decay of Xe-136 in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. Understanding the response of the detector is imperative in achieving a consistent and well understood energy measurement. The abundance of xenon K-shell X-ray emission during data taking has been identified as a multitool for the characterisation of the fundamental parameters of the gas as well as the equalisation of the response of the detector. The NEXT-DEMO prototype is a similar to 1.5 kg volume TPC filled with natural xenon. It employs an array of 19 PMTs as an energy plane and of 256 SiPMs as a tracking plane with the TPC light tube and SiPM surfaces being coated with tetraphenyl butadiene (TPB) which acts as a wavelength shifter for the VUV scintillation light produced by xenon. This paper presents the measurement of the properties of the drift of electrons in the TPC, the effects of the EL production region, and the extraction of position dependent correction constants using K-alpha X-ray deposits. These constants were used to equalise the response of the detector to deposits left by gammas from Na-22.
Address [Lorca, D.; Martin-Albo, J.; Laing, A.; Ferrario, P.; Gomez-Cadenas, J. J.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Liubarsky, I.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: david.lorca@ific.uv.es;
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000345858500050 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2055
Permanent link to this record
 

 
Author NEXT Collaboration (Cebrian, S. et al); Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Querol, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title Radiopurity assessment of the tracking readout for the NEXT double beta decay experiment Type Journal Article
Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 10 Issue Pages P05006 - 16pp
Keywords Radiation calculations; Time projection Chambers (TPC); Double-beta decay detectors; Particle tracking detectors (Gaseous detectors)
Abstract The “Neutrino Experiment with a Xenon Time-Projection Chamber” (NEXT) is intended to investigate the neutrinoless double beta decay of Xe-136, which requires a severe suppression of potential backgrounds; therefore, an extensive screening and selection process is underway to control the radiopurity levels of the materials to be used in the experimental set-up of NEXT. The detector design combines the measurement of the topological signature of the event for background discrimination with the energy resolution optimization. Separate energy and tracking readout planes are based on different sensors: photomultiplier tubes for calorimetry and silicon multi-pixel photon counters for tracking. The design of a radiopure tracking plane, in direct contact with the gas detector medium, was specially challenging since the needed components like printed circuit boards, connectors, sensors or capacitors have typically, according to available information in databases and in the literature, activities too large for experiments requiring ultra-low background conditions. Here, the radiopurity assessment of tracking readout components based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain) is described. According to the obtained results, radiopure enough printed circuit boards made of kapton and copper, silicon photomultipliers and other required components, fulfilling the requirement of an overall background level in the region of interest of at most 8 x 10(-4) counts keV(-1) kg(-1) y(-1), have been identified.
Address [Cebrian, S.; Dafni, T.; Gonzalez-Diaz, D.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Ortiz de Solorzano, A.; Villar, J. A.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, E-50009 Zaragoza, Spain, Email: scebrian@unizar.es
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000357993300038 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2305
Permanent link to this record
 

 
Author NEXT Collaboration (Serra, L. et al); Sorel, M.; Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Querol, M.; Renner, J.; Rodriguez, J.; Simon, A.; Yahlali, N.
Title An improved measurement of electron-ion recombination in high-pressure xenon gas Type Journal Article
Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 10 Issue Pages P03025 - 21pp
Keywords Charge transport, multiplication and electroluminescence in rare gases and liquids; Double-beta decay detectors; Time projection chambers; Ionization and excitation processes
Abstract We report on results obtained with the NEXT-DEMO prototype of the NEXT-100 high-pressure xenon gas time projection chamber (TPC), filled with pure xenon gas at 10 bar pressure and exposed to an alpha decay calibration source. Compared to our previous measurements with alpha particles, an upgraded detector and improved analysis techniques have been used. We measure event-by-event correlated fluctuations between ionization and scintillation due to electronion recombination in the gas, with correlation coefficients between -0.80 and -0.56 depending on the drift field conditions. By combining the two signals, we obtain a 2.8% FWHM energy resolution for 5.49 MeV alpha particles and a measurement of the optical gain of the electroluminescent TPC. The improved energy resolution also allows us to measure the specific activity of the radon in the gas due to natural impurities. Finally, we measure the average ratio of excited to ionized atoms produced in the xenon gas by alpha particles to be 0.561 +/- 0.045, translating into an average energy to produce a primary scintillation photon of W-ex = (39.2 +/- 3.2) eV.
Address [Serra, L.; Sorel, M.; Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Querol, M.; Renner, J.; Rodriguez, J.; Simon, A.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: luis.serra@ific.uv.es
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000357944500075 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2307
Permanent link to this record
 

 
Author Renner, J.; Cervera-Villanueva, A.; Hernando, J.A.; Izmaylov, A.; Monrabal, F.; Muñoz, J.; Nygren, D.; Gomez-Cadenas, J.J.
Title Improved background rejection in neutrinoless double beta decay experiments using a magnetic field in a high pressure xenon TPC Type Journal Article
Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 10 Issue Pages P12020 - 19pp
Keywords Pattern recognition, cluster finding, calibration and fitting methods; Double-beta decay detectors; Time projection chambers; Particle tracking detectors (Gaseous detectors)
Abstract We demonstrate that the application of an external magnetic field could lead to an improved background rejection in neutrinoless double-beta (0 nu beta beta) decay experiments using a high-pressure xenon (HPXe) TPC. HPXe chambers are capable of imaging electron tracks, a feature that enhances the separation between signal events (the two electrons emitted in the 0 nu beta beta decay of Xe-136) and background events, arising chiefly from single electrons of kinetic energy compatible with the end-point of the 0 nu beta beta decay (Q(beta beta)). Applying an external magnetic field of sufficiently high intensity (in the range of 0.5-1 Tesla for operating pressures in the range of 5-15 atmospheres) causes the electrons to produce helical tracks. Assuming the tracks can be properly reconstructed, the sign of the curvature can be determined at several points along these tracks, and such information can be used to separate signal (0 nu beta beta) events containing two electrons producing a track with two different directions of curvature from background (single-electron) events producing a track that should spiral in a single direction. Due to electron multiple scattering, this strategy is not perfectly efficient on an event-by-event basis, but a statistical estimator can be constructed which can be used to reject background events by one order of magnitude at a moderate cost (about 30%) in signal efficiency. Combining this estimator with the excellent energy resolution and topological signature identification characteristic of the HPXe TPC, it is possible to reach a background rate of less than one count per ton-year of exposure. Such a low background rate is an essential feature of the next generation of 0 nu beta beta experiments, aiming to fully explore the inverse hierarchy of neutrino masses.
Address [Renner, J.; Imzaylov, A.; Monrabal, F.; Munoz, J.; Gomez-Cadenas, J. J.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: jrenner@ific.uv.es
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000369998500053 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2549
Permanent link to this record