|   | 
Details
   web
Records
Author Chen, P.; Ding, G.J.; Srivastava, R.; Valle, J.W.F.
Title Predicting neutrino oscillations with “bi-large” lepton mixing matrices Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 792 Issue Pages 461-464
Keywords
Abstract We propose two schemes for the lepton mixing matrix U = (U1U nu)-U-dagger, where U = U-1 refers to the charged sector, and U-v denotes the neutrino diagonalization matrix. We assume U-nu to be CP conserving and its three angles to be connected with the Cabibbo angle in a simple manner. CP violation arises solely from the U-1, assumed to have the CKM form, U-1 similar or equal to V-CKM, suggested by unification. Oscillation parameters depend on a single parameter, leading to narrow ranges for the “solar” and “accelerator” angles theta(12) and theta(23), as well as for the CP phase, predicted as delta(CP) similar to +/- 1.3 pi.
Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Shandong, Peoples R China, Email: pche@mail.ustc.edu.cn;
Corporate Author Thesis
Publisher (down) Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000466802100066 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4000
Permanent link to this record
 

 
Author Ding, G.J.; Nath, N.; Srivastava, R.; Valle, J.W.F.
Title Status and prospects of 'bi-large' leptonic mixing Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 796 Issue Pages 162-167
Keywords
Abstract Bi-large patterns for the leptonic mixing matrix are confronted with current neutrino oscillation data. We analyse the status of these patterns and determine, through realistic simulations, the potential of the upcoming long-baseline experiment DUNE in testing bi-large ansatze and discriminating amongst them.
Address [Ding, Gui-Jun] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Anhui, Peoples R China, Email: dinggj@ustc.edu.cn;
Corporate Author Thesis
Publisher (down) Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000483426200024 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4132
Permanent link to this record
 

 
Author Kang, S.K.; Popov, O.; Srivastava, R.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Scotogenic dark matter stability from gauged matter parity Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 798 Issue Pages 135013 - 10pp
Keywords
Abstract We explore the idea that dark matter stability results from the presence of a matter-parity symmetry, arising naturally as a consequence of the spontaneous breaking of an extended SU(3) circle times SU(3)(L) circle times U(1)(X) circle times U(1)(N) electroweak gauge symmetry with fully gauged B-L. Using this framework we construct a theory for scotogenic dark matter and analyze its main features.
Address [Kang, Sin Kyu] Seoul Tech, Sch Liberal Arts, Seoul 139743, South Korea, Email: skkang@seoultech.ac.kr;
Corporate Author Thesis
Publisher (down) Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000494939000040 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4196
Permanent link to this record
 

 
Author Leite, J.; Popov, O.; Srivastava, R.; Valle, J.W.F.
Title A theory for scotogenic dark matter stabilised by residual gauge symmetry Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 802 Issue Pages 135254 - 10pp
Keywords
Abstract Dark matter stability can result from a residual matter-parity symmetry, following naturally from the spontaneous breaking of the gauge symmetry. Here we explore this idea in the context of the SU(3)(c) circle times SU(3)L circle times U(1)(x) circle times U(1)(N) electroweak extension of the standard model. The key feature of our new scotogenic dark matter theory is the use of a triplet scalar boson with anti-symmetric Yukawa couplings. This naturally implies that one of the light neutrinos is massless and, as a result, there is a lower bound for the O nu beta beta decay rate.
Address [Leite, Julio; Srivastava, Rahul; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedratico Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: julio.leite@ific.uv.es;
Corporate Author Thesis
Publisher (down) Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000515091400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4351
Permanent link to this record
 

 
Author Addazi, A.; Marciano, A.; Morais, A.P.; Pasechnik, R.; Srivastava, R.; Valle, J.W.F.
Title Gravitational footprints of massive neutrinos and lepton number breaking Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 807 Issue Pages 135577 - 8pp
Keywords
Abstract We investigate the production of primordial Gravitational Waves (GWs) arising from First Order Phase Transitions (FOPTs) associated to neutrino mass generation in the context of type-I and inverse seesaw schemes. We examine both “high-scale” as well as “low-scale” variants, with either explicit or spontaneously broken lepton number symmetry U(1)(L), in the neutrino sector. In the latter case, a pseudo-Goldstone majoron-like boson may provide a candidate for cosmological dark matter. We find that schemes with softly-broken U(1)(L), and with single Higgs-doublet scalar sector lead to either no FOPTs or too weak FOPTs, precluding the detestability of GWs in present or near future measurements. Nevertheless, we found that, in the majoron-like seesaw scheme with spontaneously broken U(1)(L), at finite temperatures, one can have strong FOPTs and non-trivial primordial GW spectra which can fall well within the frequency and amplitude sensitivity of upcoming experiments, including LISA, BBO and u-DECIGO. However, GWs observability clashes with invisible Higgs decay constraints from the LHC. A simple and consistent fix is to assume the majoron-like mass to lie above the Higgs-decay kinematical threshold. We also found that the majoron-like variant of the low-scale seesaw mechanism implies a different GW spectrum than the one expected in the high-scale seesaw. This feature will be testable in future experiments. Our analysis shows that GWs can provide a new and complementary portal to test the neutrino mass generation mechanism.
Address [Addazi, Andrea; Marciano, Antonino] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China, Email: andrea.addazi@lngs.infn.it;
Corporate Author Thesis
Publisher (down) Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000571765700055 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4543
Permanent link to this record
 

 
Author Mandal, S.; Srivastava, R.; Valle, J.W.F.
Title The simplest scoto-seesaw model: WIMP dark matter phenomenology and Higgs vacuum stability Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 819 Issue Pages 136458 - 14pp
Keywords
Abstract We analyze the consistency of electroweak breaking, neutrino and dark matter phenomenology within the simplest scoto-seesaw model. By adding the minimal dark sector to the simplest “missing partner” type-I seesaw one has a physical picture for the neutrino oscillation lengths: the “atmospheric” mass scale arises from the tree-level seesaw, while the “solar” scale is induced radiatively, mediated by the dark sector. We identify parameter regions consistent with theoretical constraints, as well as dark matter relic abundance and direct detection searches. Using two-loop renormalization group equations we explore the stability of the vacuum and the consistency of the underlying dark parity symmetry. One also has a lower bound for the neutrinoless double beta decay amplitude.
Address [Mandal, Sanjoy; Valle, Jose W. F.] CSIC Univ Valencia, AHEP Grp, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: smandal@ific.uv.es;
Corporate Author Thesis
Publisher (down) Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000679259200021 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4921
Permanent link to this record
 

 
Author Mandal, S.; Rojas, N.; Srivastava, R.; Valle, J.W.F.
Title Dark matter as the origin of neutrino mass in the inverse seesaw mechanism Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 821 Issue Pages 136609 - 15pp
Keywords
Abstract We propose that neutrino masses are “seeded” by a dark sector within the inverse seesaw mechanism. This way we have a new, “hidden”, variant of the scotogenic scenario for radiative neutrino masses. We discuss both explicit and dynamical lepton number violation. In addition to invisible Higgs decays with majoron emission, we discuss in detail the pheneomenolgy of dark matter, as well as the novel features associated to charged lepton flavour violation, and neutrino physics.
Address [Mandal, Sanjoy; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: smandal@ific.uv.es;
Corporate Author Thesis
Publisher (down) Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000734909800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5065
Permanent link to this record
 

 
Author Batra, A.; Bharadwaj, P.; Mandal, S.; Srivastava, R.; Valle, J.W.F.
Title W-mass anomaly in the simplest linear seesaw mechanism Type Journal Article
Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 834 Issue Pages 137408 - 12pp
Keywords
Abstract The simplest linear seesaw mechanism can accommodate the new CDF-II W mass measurement. In addition to Standard Model particles, the model includes quasi-Dirac leptons, and a second, leptophilic, scalar doublet seeding small neutrino masses. Our proposal is consistent with electroweak precision tests, neutrino physics, rare decays and collider restrictions, requiring a new charged scalar below a few TeV, split in mass from the new degenerate scalar and pseudoscalar neutral Higgs bosons.
Address [Batra, Aditya; Bharadwaj, Praveen; Srivastava, Rahul] Indian Inst Sci Educ & Res Bhopal, Dept Phys, Bhopal Bypass Rd, Bhopal 462066, India, Email: adityab17@iiserb.ac.in;
Corporate Author Thesis
Publisher (down) Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000864095300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5384
Permanent link to this record
 

 
Author Bonilla, C.; Nebot, M.; Valle, J.W.F.; Srivastava, R.
Title Flavor physics scenario for the 750 GeV diphoton anomaly Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 93 Issue 7 Pages 073009 - 5pp
Keywords
Abstract A simple variant of a realistic flavor symmetry scheme for fermion masses and mixings provides a possible interpretation of the diphoton anomaly as an electroweak singlet “flavon.” The existence of TeV scale vectorlike T-quarks required to provide adequate values for Cabibbo-Kobayashi-Maskawa (CKM) parameters can also naturally account for the diphoton anomaly. Correlations between V-ub and V-cb with the vectorlike T-quark mass can be predicted. Should the diphoton anomaly survive in a future run, our proposed interpretation can also be tested in upcoming B and LHC studies.
Address [Bonilla, Cesar; Nebot, Miguel; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient Paterna C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher (down) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000374548300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2669
Permanent link to this record
 

 
Author Abbas, G.; Zahiri-Abyaneh, M.; Srivastava, R.
Title Precise predictions for Dirac neutrino mixing Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 95 Issue 7 Pages 075005 - 7pp
Keywords
Abstract The neutrino mixing parameters are thoroughly studied using renormalization- group evolution of Dirac neutrinos with recently proposed parametrization of the neutrino mixing angles referred to as “high-scale mixing relations.” The correlations among all neutrino mixing and CP violating observables are investigated. The predictions for the neutrino mixing angle. 23 are precise, and could be easily tested by ongoing and future experiments. We observe that the high-scale mixing unification hypothesis is incompatible with Dirac neutrinos due to updated experimental data.
Address [Abbas, Gauhar; Zahiri Abyaneh, Mehran; Srivastava, Rahul] Univ Valencia, CSIC, IFIC, Apt Correus 22085, Valencia, Spain, Email: gauhar@prl.res.in;
Corporate Author Thesis
Publisher (down) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000399390900009 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3071
Permanent link to this record