|   | 
Details
   web
Records
Author Vijande, J.; Granero, D.; Perez-Calatayud, J.; Ballester, F.
Title Monte Carlo dosimetric study of the medium dose rate CSM40 source Type Journal Article
Year 2013 Publication Applied Radiation and Isotopes Abbreviated Journal Appl. Radiat. Isot.
Volume 82 Issue Pages 283-288
Keywords Brachytherapy; Cs-137 seed; TG-43 based dosimetry; Monte Carlo
Abstract The Cs-137 medium dose rate (MDR) CSM40 source model (Eckert & Ziegler BEBIG, Germany) is in clinical use but no dosimetric dataset has been published. This study aims to obtain dosimetric data for the CSM40 source for its use in clinical practice as required by the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO). Penelope2008 and Geant4 Monte Carlo codes were used to characterize this source dosimetrically. It was located in an unbounded water phantom with composition and mass density as recommended by AAPM and ESTRO. Due to the low photon energies of Cs-137, absorbed dose was approximated by collisional kerma. Additional simulations were performed to obtain the air-kerma strength, sic. Mass-energy absorption coefficients in water and air were consistently derived and used to calculate collisional kerma. Results performed with both radiation transport codes showed agreement typically within 0.05%. Dose rate constant, radial dose function and anisotropy function are provided for the CSM40 and compared with published data for other commercially available Cs-137 sources. An uncertainty analysis has been performed. The data provided by this study can be used as input data and verification in the treatment planning systems. (C) 2013 Elsevier Ltd. All rights reserved.
Address [Vijande, J.; Ballester, F.] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: Javier.vijande@uv.es
Corporate Author Thesis
Publisher (up) Pergamon-Elsevier Science Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-8043 ISBN Medium
Area Expedition Conference
Notes WOS:000328804000043 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1678
Permanent link to this record
 

 
Author Oliver, S.; Vijande, J.; Tejedor-Aguilar, N.; Miro, R.; Rovira-Escutia, J.J.; Ballester, F.; Juste, B.; Carmona, V.; Felici, G.; Verdu, G.; Sanchis, E.; Conde, A.; Perez-Calatayud, J.
Title Monte Carlo flattening filter design to high energy intraoperative electron beam homogenization Type Journal Article
Year 2023 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.
Volume 212 Issue Pages 111102 - 6pp
Keywords Intraoperative radiotherapy; Electron portable LinAc; Flattening filter; Dosimetry; Monte Carlo
Abstract Intraoperative radiotherapy using mobile linear accelerators is used for a wide variety of malignancies. However, when large fields are used in combination with high energies, a deterioration of the flatness dose profile is measured with respect to smaller fields and lower energies. Indeed, for the LIAC HWL of Sordina, this deterioration is observed for the 12 MeV beam combined with 10 cm (or larger) diameter applicator. Aimed to solve this problem, a flattening filter has been designed and validated evaluating the feasibility of its usage at the upper part of the applicator. The design of the filter was based on Monte Carlo simulations because of its accuracy in modeling components of clinical devices, among other purposes. The LIAC 10 cm diameter applicator was modeled and simulated independently by two different research groups using two different MC codes, reproducing the heterogeneity of the 12 MeV energy beam. Then, an iterative process of filter design was carried out. Finally, the MC designed conical filter with the optimal size and height to obtain the desired flattened beam was built in-house using a 3D printer. During the experimental validation of the applicator-filter, percentage depth dose, beam profiles, absolute and peripheral dose measurements were performed to demonstrate the effectiveness of the filter addition in the applicator. These measurements conclude that the beam has been flattened, from 5.9% with the standard configuration to 1.6% for the configuration with the filter, without significant increase of the peripheral dose. Consequently, the new filter-applicator LIAC configuration can be used also in a conventional surgery room. A reduction of 16% of the output dose and a reduction of 1.1 mm in the D50 of the percentage depth dose was measured with respect to the original configuration. This work is a proof-of-concept that demonstrates that it is possible to add a filter able to flatten the beam delivered by the Sordina LIAC HWL. Future studies will focus on more refined technical solutions fully compatible with the integrity of the applicator, including its sterilization, to be safely introduced in the clinical practice.
Address [Oliver, S.; Miro, R.; Juste, B.; Verdu, G.] Univ Polite cn Vale ncia, Inst Segur Ind Radiofis & Medioambiental ISIRYM, Cami Vera S-N, Valencia 46022, Spain, Email: gverdu@iqn.upv.es
Corporate Author Thesis
Publisher (up) Pergamon-Elsevier Science Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-806x ISBN Medium
Area Expedition Conference
Notes WOS:001026194900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5578
Permanent link to this record
 

 
Author Richart, J.; Otal, A.; Rodriguez, S.; Nicolas, A.I.; DePiaggio, M.; Santos, M.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.
Title A practical MRI-based reconstruction method for a new endocavitary and interstitial gynaecological template Type Journal Article
Year 2015 Publication Journal of Contemporary Brachytherapy Abbreviated Journal J. Contemp. Brachytherapy
Volume 7 Issue 5 Pages 407-414
Keywords brachytherapy template; catheter reconstruction; gynecological template; interstitial implants
Abstract Purpose: There are perineal templates for interstitial implants such as MUPIT and Syed applicators. Their limitations are the intracavitary component deficit and the necessity to use computed tomography (CT) for treatment planning since both applicators are non-magnetic resonance imaging (MRI) compatibles. To overcome these problems, a new template named Template Benidorm (TB) has been recently developed. Titanium needles are usually reconstructed based on their own artifacts, mainly in T1-weighted sequence, using the void on the tip as the needle tip position. Nevertheless, patient tissues surrounding the needles present heterogeneities that complicate the accurate identification of these artifact patterns. The purpose of this work is to improve the titanium needle reconstruction uncertainty for the TB case using a simple method based on the free needle lengths and typical MRI pellets markers. Material and methods: The proposed procedure consists on the inclusion of three small A-vitamin pellets (hyper-intense on MRI images) compressed by both applicator plates defining the central plane of the plate's arrangement. The needles used are typically 20 cm in length. For each needle, two points are selected defining the straight line. From such line and the plane equations, the intersection can be obtained, and using the free length (knowing the offset distance), the coordinates of the needle tip can be obtained. The method is applied in both T1W and T2W acquisition sequences. To evaluate the inter-observer variation of the method, three implants of T1W and another three of T2W have been reconstructed by two different medical physicists with experience on these reconstructions. Results and conclusions: The differences observed in the positioning were significantly smaller than 1 mm in all cases. The presented algorithm also allows the use of only T2W sequence either for contouring or reconstruction purposes. The proposed method is robust and independent of the visibility of the artifact at the tip of the needle.
Address [Richart, Jose; Otal, Antonio; Rodriguez, Silvia; DePiaggio, Marina; Santos, Manuel; Perez-Calatayud, Jose] Benidorm Hosp, Dept Radiotherapy, Alicante, Spain, Email: fballest@uv.es
Corporate Author Thesis
Publisher (up) Termedia Publishing House Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1689-832x ISBN Medium
Area Expedition Conference
Notes WOS:000365247600012 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2476
Permanent link to this record
 

 
Author Candela-Juan, C.; Ballester, F.; Perez-Calatayud, J.; Vijande, J.
Title Assaying multiple I-125 seeds with the well-ionization chamber SourceCheck(4 Pi) 33005 and a new insert Type Journal Article
Year 2015 Publication Journal of Contemporary Brachytherapy Abbreviated Journal J. Contemp. Brachytherapy
Volume 7 Issue 6 Pages 492-496
Keywords brachytherapy; insert; quality assurance; prostate; seeds; well chamber
Abstract Purpose: To provide a practical solution that can be adopted in clinical routine to fulfill the AAPM-ESTRO recommendations regarding quality assurance of seeds used in prostate permanent brachytherapy. The aim is to design a new insert for the well-ionization chamber SourceCheck(4 Pi) 33005 (PTW, Germany) that allows evaluating the mean air-kerma strength of up to ten I-125 seeds with one single measurement instead of measuring each seed individually. Material and methods: The material required is: a) the SourceCheck(4 Pi) 33005 well-ionization chamber provided with a PTW insert to measure the air-kerma strength S-K of one single seed at a time; b) a newly designed insert that accommodates ten seeds in one column, which allows measuring the mean S-K of the ten seeds in one single measurement; and c) a container with ten seeds from the same batch and class of the seeds used for the patient implant, and a set of nine non-radioactive seeds.The new insert is characterized by determining its calibration coefficient, used to convert the reading of the well-chamber when ten seeds are measured to their mean S-K. The proposed method is validated by comparing the mean S-K of the ten seeds obtained from the new insert with the individual measurement of S-K of each seed, evaluated with the PTW insert. Results: The ratio between the calibration coefficient of the new insert and the calibration coefficient of the PTW insert for the SourceCheck(4 Pi) 33005 is 1.135 +/- 0.007 (k = 1). The mean S-K of a set of ten seeds evaluated with this new system is in agreement with the mean value obtained from measuring independently the S-K of each seed. Conclusions: The new insert and procedure allow evaluating the mean S-K of ten seeds prior to the implant in a single measurement. The method is faster and more efficient from radiation protection point of view than measuring the individual S-K of each seed.
Address [Candela-Juan, Cristian; Perez-Calatayud, Jose] La Fe Univ, Dept Radiat Oncol, Phys Sect, E-46026 Valencia, Spain, Email: ccanjuan@gmail.com
Corporate Author Thesis
Publisher (up) Termedia Publishing House Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1689-832x ISBN Medium
Area Expedition Conference
Notes WOS:000368381300010 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2533
Permanent link to this record
 

 
Author Valdes-Cortez, C.; Niatsetski, Y.; Perez-Calatayud, J.; Ballester, F.; Vijande, J.
Title A Monte Carlo study of the relative biological effectiveness in surface brachytherapy Type Journal Article
Year 2022 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 49 Issue Pages 5576-5588
Keywords Monte Carlo; relative biological effectiveness; surface HDR brachytherapy
Abstract Purpose This work aims to simulate clustered DNA damage from ionizing radiation and estimate the relative biological effectiveness (RBE) for radionuclide (rBT)- and electronic (eBT)-based surface brachytherapy through a hybrid Monte Carlo (MC) approach, using realistic models of the sources and applicators. Methods Damage from ionizing radiation has been studied using the Monte Carlo Damage Simulation algorithm using as input the primary electron fluence simulated using a state-of-the-art MC code, PENELOPE-2018. Two Ir-192 rBT applicators, Valencia and Leipzig, one Co-60 source with a Freiburg Flap applicator (reference source), and two eBT systems, Esteya and INTRABEAM, have been included in this study implementing full realizations of their geometries as disclosed by the manufacturer. The role played by filtration and tube kilovoltage has also been addressed. Results For rBT, an RBE value of about 1.01 has been found for the applicators and phantoms considered. In the case of eBT, RBE values for the Esteya system show an almost constant RBE value of about 1.06 for all depths and materials. For INTRABEAM, variations in the range of 1.12-1.06 are reported depending on phantom composition and depth. Modifications in the Esteya system, filtration, and tube kilovoltage give rise to variations in the same range. Conclusions Current clinical practice does not incorporate biological effects in surface brachytherapy. Therefore, the same absorbed dose is administered to the patients independently on the particularities of the rBT or eBT system considered. The almost constant RBE values reported for rBT support that assumption regardless of the details of the patient geometry, the presence of a flattening filter in the applicator design, or even significant modifications in the photon energy spectra above 300 keV. That is not the case for eBT, where a clear dependence on the eBT system and the characteristics of the patient geometry are reported. A complete study specific for each eBT system, including detailed applicator characteristics (size, shape, filtering, among others) and common anatomical locations, should be performed before adopting an existing RBE value.
Address [Valdes-Cortez, Christian] Hosp Reg Antofagasta, Nucl Med Dept, Antofagasta, Chile, Email: cvalcort@gmail.com
Corporate Author Thesis
Publisher (up) Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition Conference
Notes WOS:000811709400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5262
Permanent link to this record
 

 
Author Assam, I.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Poppe, B.; Siebert, F.A.
Title Evaluation of dosimetric effects of metallic artifact reduction and tissue assignment on Monte Carlo dose calculations for I-125 prostate implants Type Journal Article
Year 2022 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 49 Issue Pages 6195-6208
Keywords metallic artifact reduction; Monte Carlo dosimetry; post-implant CT; prostate brachytherapy; tissue assignment schemes; voxelized virtual patient model
Abstract Purpose Monte Carlo (MC) simulation studies, aimed at evaluating the magnitude of tissue heterogeneity in I-125 prostate permanent seed implant brachytherapy (BT), customarily use clinical post-implant CT images to generate a virtual representation of a realistic patient model (virtual patient model). Metallic artifact reduction (MAR) techniques and tissue assignment schemes (TAS) are implemented on the post-implant CT images to mollify metallic artifacts due to BT seeds and to assign tissue types to the voxels corresponding to the bright seed spots and streaking artifacts, respectively. The objective of this study is to assess the combined influence of MAR and TAS on MC absorbed dose calculations in post-implant CT-based phantoms. The virtual patient models used for I-125 prostate implant MC absorbed dose calculations in this study are derived from the CT images of an external radiotherapy prostate patient without BT seeds and prostatic calcifications, thus averting the need to implement MAR and TAS. Methods The geometry of the IsoSeed I25.S17plus source is validated by comparing the MC calculated results of the TG-43 parameters for the line source approximation with the TG-43U1S2 consensus data. Four MC absorbed dose calculations are performed in two virtual patient models using the egs_brachy MC code: (1) TG-43-based D-w,w-TG(43), (2) D-w,D-w-MBDC that accounts for interseed scattering and attenuation (ISA), (3) D-m,D-m that examines ISA and tissue heterogeneity by scoring absorbed dose in tissue, and (4) D-w,D-m that unlike D-m,D-m scores absorbed dose in water. The MC absorbed doses (1) and (2) are simulated in a TG-43 patient phantom derived by assigning the densities of every voxel to 1.00 g cm(-3) (water), whereas MC absorbed doses (3) and (4) are scored in the TG-186 patient phantom generated by mapping the mass density of each voxel to tissue according to a CT calibration curve. The MC absorbed doses calculated in this study are compared with VariSeed v8.0 calculated absorbed doses. To evaluate the dosimetric effect of MAR and TAS, the MC absorbed doses of this work (independent of MAR and TAS) are compared to the MC absorbed doses of different I-125 source models from previous studies that were calculated with different MC codes using post-implant CT-based phantoms generated by implementing MAR and TAS on post-implant CT images. Results The very good agreement of TG-43 parameters of this study and the published consensus data within 3% validates the geometry of the IsoSeed I25.S17plus source. For the clinical studies, the TG-43-based calculations show a D-90 overestimation of more than 4% compared to the more realistic MC methods due to ISA and tissue composition. The results of this work generally show few discrepancies with the post-implant CT-based dosimetry studies with respect to the D-90 absorbed dose metric parameter. These discrepancies are mainly Type B uncertainties due to the different I-125 source models and MC codes. Conclusions The implementation of MAR and TAS on post-implant CT images have no dosimetric effect on the I-125 prostate MC absorbed dose calculation in post-implant CT-based phantoms.
Address [Assam, Isong; Siebert, Frank-Andre] UKSH, Clin Radiotherapy Radiooncol, Campus Kiel, Kiel, Germany, Email: Isong.Assam@uksh.de
Corporate Author Thesis
Publisher (up) Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition Conference
Notes WOS:000835807200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5321
Permanent link to this record