toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arrechea, J.; Delhom, A.; Jimenez-Cano, A. url  doi
openurl 
  Title Inconsistencies in four-dimensional Einstein-Gauss-Bonnet gravity Type Journal Article
  Year 2021 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 45 Issue 1 Pages 013107 - 8pp  
  Keywords alternative theories of gravity; singularities; Einstein-Gauss-Bonnet  
  Abstract We attempt to clarify several aspects concerning the recently presented four-dimensional Einstein-Gauss-Bonnet gravity. We argue that the limiting procedure outlined in [Phys. Rev. Lett. 124, 081301 (2020)] generally involves ill-defined terms in the four dimensional field equations. Potential ways to circumvent this issue are discussed, alongside remarks regarding specific solutions of the theory. We prove that, although linear perturbations are well behaved around maximally symmetric backgrounds, the equations for second-order perturbations are ill-defined even around a Minkowskian background. Additionally, we perform a detailed analysis of the spherically symmetric solutions and find that the central curvature singularity can be reached within a finite proper time.  
  Address [Arrechea, Julio] CSIC, Inst Astrofis Andalucia, Granada, Spain, Email: arrechea@iaa.es;  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000606026400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4676  
Permanent link to this record
 

 
Author AMON Team, HAWC and IceCube Collaborations (Ayala Solares, H.A. et al); Salesa Greus, F. url  doi
openurl 
  Title Multimessenger Gamma-Ray and Neutrino Coincidence Alerts Using HAWC and IceCube Subthreshold Data Type Journal Article
  Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 906 Issue 1 Pages 63 - 10pp  
  Keywords  
  Abstract The High Altitude Water Cerenkov (HAWC) and IceCube observatories, through the Astrophysical Multimessenger Observatory Network (AMON) framework, have developed a multimessenger joint search for extragalactic astrophysical sources. This analysis looks for sources that emit both cosmic neutrinos and gamma rays that are produced in photohadronic or hadronic interactions. The AMON system is running continuously, receiving subthreshold data (i.e., data that are not suited on their own to do astrophysical searches) from HAWC and IceCube, and combining them in real time. Here we present the analysis algorithm, as well as results from archival data collected between 2015 June and 2018 August, with a total live time of 3.0 yr. During this period we found two coincident events that have a false-alarm rate (FAR) of <1 coincidence yr(-1), consistent with the background expectations. The real-time implementation of the analysis in the AMON system began on 2019 November 20 and issues alerts to the community through the Gamma-ray Coordinates Network with an FAR threshold of <4 coincidences yr(-1).  
  Address [Solares, H. A. Ayala; Coutu, S.; DeLaunay, J. J.; Fox, D. B.; Gregoire, T.; Keivani, A.; Krauss, F.; Mostafa, M.; Murase, K.; Turley, C. F.; Anderson, T.; Cowen, D. F.; Dunkman, M.; Eller, P.; Fienberg, A.; Huang, F.; Kheirandish, A.; Lanfranchi, J. L.; Li, Y.; Pankova, D. V.; Weiss, M. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA, Email: hgayala@psu.edu  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000605929400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4679  
Permanent link to this record
 

 
Author Poley, L.; Stolzenberg, U.; Schwenker, B.; Frey, A.; Gottlicher, P.; Marinas, C.; Stanitzki, M.; Stelzer, B. doi  openurl
  Title Mapping the material distribution of a complex structure in an electron beam Type Journal Article
  Year 2021 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 16 Issue 1 Pages P01010 - 33pp  
  Keywords Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Particle tracking detectors; Detector design and construction technologies and materials  
  Abstract The simulation and analysis of High Energy Physics experiments require a realistic simulation of the detector material and its distribution. The challenge is to describe all active and passive parts of large scale detectors like ATLAS in terms of their size, position and material composition. The common method for estimating the radiation length by weighing individual components, adding up their contributions and averaging the resulting material distribution over extended structures provides a good general estimate, but can deviate significantly from the material actually present. A method has been developed to assess its material distribution with high spatial resolution using the reconstructed scattering angles and hit positions of high energy electron tracks traversing an object under investigation. The study presented here shows measurements for an extended structure with a highly inhomogeneous material distribution. The structure under investigation is an End-of-Substructure-card prototype designed for the ATLAS Inner Tracker strip tracker – a PCB populated with components of a large range of material budgets and sizes. The measurements presented here summarise requirements for data samples and reconstructed electron tracks for reliable image reconstruction of large scale, inhomogeneous samples, choices of pixel sizes compared to the size of features under investigation as well as a bremsstrahlung correction for high material densities and thicknesses.  
  Address [Poley, L.; Stelzer, B.] Simon Fraser Univ, Dept Phys, Univ Dr, Burnaby, BC, Canada, Email: APoley@cern.ch  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000608273000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4687  
Permanent link to this record
 

 
Author Pajtler, M.V. et al; Gadea, A. doi  openurl
  Title Excited states of Y-90,Y-92,Y-94 populated in Zr-90+Pb-208 multinucleon transfer reaction Type Journal Article
  Year 2021 Publication Physica Scripta Abbreviated Journal Phys. Scr.  
  Volume 96 Issue 3 Pages 035305 - 7pp  
  Keywords multinucleon transfer reactions; gamma spectroscopy; magnetic spectrometers; gamma-ray spectrometers  
  Abstract Multinucleon transfer reactions in Zr-90+Pb-208 have been studied via fragment-gamma coincidences, employing the PRISMA magnetic spectrometer coupled to the CLARA gamma-array. An analysis on Y isotopes has been carried out incorporating spectroscopic as well as reaction mechanism aspects. New gamma transitions have been observed in Y-94, confirming the findings of recent studies where nuclei were produced via fission of uranium, and a comparison with near-by Y-90,Y-92 isotopes populated in the same reaction has been discussed. Experimental cross sections have been extracted and compared with the GRAZING calculations, showing a fair agreement along the neutron pick-up side. The results confirm how multinucleon transfer reactions are a suitable mechanism for the study of neutron-rich nuclei.  
  Address [Pajtler, M. Varga] Univ Osijek, Dept Phys, Osijek, Croatia, Email: Suzana.Szilner@irb.hr;  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000611517400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4694  
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Villaescusa-Navarro, F. url  doi
openurl 
  Title Removing Astrophysics in 21 cm Maps with Neural Networks Type Journal Article
  Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 907 Issue 1 Pages 44 - 14pp  
  Keywords Cosmology; Cold dark matter; Dark matter; Dark matter distribution; H I line emission; Intergalactic medium; Cosmological evolution; Convolutional neural networks; Large-scale structure of the universe  
  Abstract Measuring temperature fluctuations in the 21 cm signal from the epoch of reionization and the cosmic dawn is one of the most promising ways to study the universe at high redshifts. Unfortunately, the 21 cm signal is affected by both cosmology and astrophysics processes in a nontrivial manner. We run a suite of 1000 numerical simulations with different values of the main astrophysical parameters. From these simulations we produce tens of thousands of 21 cm maps at redshifts 10 <= z <= 20. We train a convolutional neural network to remove the effects of astrophysics from the 21 cm maps and output maps of the underlying matter field. We show that our model is able to generate 2D matter fields not only that resemble the true ones visually but whose statistical properties agree with the true ones within a few percent down to scales 2 Mpc(-1). We demonstrate that our neural network retains astrophysical information that can be used to constrain the value of the astrophysical parameters. Finally, we use saliency maps to try to understand which features of the 21 cm maps the network is using in order to determine the value of the astrophysical parameters.  
  Address [Villanueva-Domingo, Pablo] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: Pablo.Villanueva@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000612333400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4698  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva