toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Karan, A.; Sadhukhan, S.; Valle, J.W.F. url  doi
openurl 
  Title Phenomenological profile of scotogenic fermionic dark matter Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 185 - 34pp  
  Keywords Particle Nature of Dark Matter; Models for Dark Matter; Neutrino Interactions  
  Abstract We consider the possibility that neutrino masses arise from the exchange of dark matter states. We examine in detail the phenomenology of fermionic dark matter in the singlet-triplet scotogenic model. We explore the case of singlet-like fermionic dark matter, taking into account all coannihilation effects relevant for determining its relic abundance, such as fermion-fermion and scalar-fermion coannihilation. Although this in principle allows for dark matter below 60 GeV, the latter is in conflict with charged lepton flavour violation (cLFV) and/or collider physics constraints. We examine the prospects for direct dark matter detection in upcoming experiments up to 10 TeV. Fermion-scalar coannihilation is needed to obtain viable fermionic dark matter in the 60-100 GeV mass range. Fermion-fermion and fermion-scalar coannihilation play complementary roles in different parameter regions above 100 GeV.  
  Address [Karan, Anirban; Sadhukhan, Soumya; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: kanirban@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001135721300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5904  
Permanent link to this record
 

 
Author Jueid, A.; Kip, J.; Ruiz de Austri, R.; Skands, P. url  doi
openurl 
  Title The Strong Force meets the Dark Sector: a robust estimate of QCD uncertainties for anti-matter dark matter searches Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 119 - 48pp  
  Keywords Cosmic Rays; Particle Nature of Dark Matter; Specific QCD Phenomenology  
  Abstract In dark-matter annihilation channels to hadronic final states, stable particles – such as positrons, photons, antiprotons, and antineutrinos – are produced via complex sequences of phenomena including QED/QCD radiation, hadronisation, and hadron decays. These processes are normally modelled by Monte Carlo (MC) event generators whose limited accuracy imply intrinsic QCD uncertainties on the predictions for indirect-detection experiments like Fermi-LAT, Pamela, IceCube or Ams-02. In this article, we perform a comprehensive analysis of QCD uncertainties, meaning both perturbative and nonperturbative sources of uncertainty are included – estimated via variations of MC renormalization-scale and fragmentation-function parameters, respectively – in antimatter spectra from dark-matter annihilation, based on parametric variations of the Pythia 8 event generator. After performing several retunings of light-quark fragmentation functions, we define a set of variations that span a conservative estimate of the QCD uncertainties. We estimate the effects on antimatter spectra for various annihilation channels and final-state particle species, and discuss their impact on fitted values for the dark-matter mass and thermally-averaged annihilation cross section. We find dramatic impacts which can go up to O(10%) for the annihilation cross section. We provide the spectra in tabulated form including QCD uncertainties and code snippets to perform fast dark-matter fits, in this github repository.  
  Address [Jueid, Adil] Inst Basic Sci IBS, Ctr Theoret Phys Universe, Particle Theory & Cosmol Grp, Daejeon 34126, South Korea, Email: adiljueid@ibs.re.kr;  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001165531600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5956  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aikot, A.; Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko, M.; Escobar, C.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Saibel, A.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Search for resonant production of dark quarks in the dijet final state with the ATLAS detector Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 128 - 35pp  
  Keywords Beyond Standard Model; Hadron-Hadron Scattering; Dark Matter; Exotics  
  Abstract This paper presents a search for a new Z' resonance decaying into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as Standard Model particles. This analysis is based on proton-proton collision data recorded at root s = 13TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb(-1). After selecting events containing large-radius jets with high track multiplicity, the invariant mass distribution of the two highest-transverse-momentum jets is scanned to look for an excess above a data-driven estimate of the Standard Model multijet background. No significant excess of events is observed and the results are thus used to set 95% confidence-level upper limits on the production cross-section times branching ratio of the Z' to dark quarks as a function of the Z' mass for various dark-quark scenarios.  
  Address [Filmer, E. K.; Grant, C. M.; Jackson, P.; Kong, A. X. Y.; Pandya, H. D.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001185478500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6046  
Permanent link to this record
 

 
Author NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.; Tuzi, M. url  doi
openurl 
  Title First constraints on the Lμ – Lτ explanation of the muon g-2 anomaly from NA64-e at CERN Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 212 - 15pp  
  Keywords Beyond Standard Model; Fixed Target Experiments; Dark Matter  
  Abstract The inclusion of an additional U(1) gauge L-mu – L-tau symmetry would release the tension between the measured and the predicted value of the anomalous muon magnetic moment: this paradigm assumes the existence of a new, light Z ' vector boson, with dominant coupling to μand tau leptons and interacting with electrons via a loop mechanism. The L-mu – L-tau model can also explain the Dark Matter relic abundance, by assuming that the Z ' boson acts as a “portal” to a new Dark Sector of particles in Nature, not charged under known interactions. In this work we present the results of the Z ' search performed by the NA64-e experiment at CERN SPS, that collected similar to 9 x 10(11) 100 GeV electrons impinging on an active thick target. Despite the suppressed Z ' production yield with an electron beam, NA64-e provides the first accelerator-based results excluding the g – 2 preferred band of the Z ' parameter space in the 1 keV < m(Z ') less than or similar to 2 MeV range, in complementarity with the limits recently obtained by the NA64-mu experiment with a muon beam.  
  Address [Antonov, A.; Bisio, P.; Celentano, A.; Marini, A.; Marsicano, L.] INFN Sez Genova, I-16147 Genoa, Italy, Email: luca.marsicano@ge.infn.it  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001276265700010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6218  
Permanent link to this record
 

 
Author Lessa, A.; Sanz, V. url  doi
openurl 
  Title Going beyond Top EFT Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 107 - 29pp  
  Keywords SMEFT; Dark Matter at Colliders; Supersymmetry  
  Abstract We present a new way to interpret Top Standard Model measurements going beyond the SMEFT framework. Instead of the usual paradigm in Top EFT, where the main effects come from tails in momenta distributions, we propose an interpretation in terms of new physics which only shows up at loop-level. The effects of these new states, which can be lighter than required within the SMEFT, appear as distinctive structures at high momenta, but may be suppressed at the tails of distributions. As an illustration of this phenomena, we present the explicit case of a UV model with a Z \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{Z} $$\end{document} 2 symmetry, including a Dark Matter candidate and a top-partner. This simple UV model reproduces the main features of this class of signatures, particularly a momentum-dependent form factor with more structure than the SMEFT. As the new states can be lighter than in SMEFT, we explore the interplay between the reinterpretation of direct searches for colored states and Dark Matter, and Top measurements, made by ATLAS and CMS in the differential t t over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document} final state. We also compare our method with what one would expect using the SMEFT reinterpretation, finding that using the full loop information provides a better discriminating power.  
  Address [Lessa, Andre] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210580 Santo Andre, SP, Brazil, Email: andre.lessa@ufabc.edu.br  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001205498200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6108  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva