toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rossi, R.R.; Sanchez Garcia, G.; Tortola, M. url  doi
openurl 
  Title Probing nuclear properties and neutrino physics with current and future CEνNS experiments Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 9 Pages 095044 - 17pp  
  Keywords  
  Abstract The recent observation of coherent elastic neutrino-nucleus scattering (CEvNS) with neutrinos from pion decay at rest (N-DAR) sources by the COHERENT Collaboration has raised interest in this process in the search for new physics. Unfortunately, current uncertainties in the determination of nuclear parameters relevant to those processes can hide new physics effects. This is not the case for processes involving lower-energy neutrino sources such as nuclear reactors. Note, however, that a CEvNS measurement with reactor neutrinos depends largely on a (still-missing) precise determination of the quenching factor at very low energies, making its observation more challenging. In the upcoming years, once this signal is confirmed, a combined analysis of N-DAR and reactor CEvNS experiments will be very useful to probe particle and nuclear physics, with a reduced dependence on nuclear uncertainties. In this work, we explore this idea by simultaneously testing the sensitivity of current and future CEvNS experiments to neutrino nonstandard interactions (NSIs) and the neutron root mean square (rms) radius, considering different neutrino sources as well as several detection materials. We show how the interplay between future reactor and accelerator CEvNS experiments can help to get robust constraints on the neutron rms and to break degeneracies between the NSI parameters. Our forecast could be used as a guide to optimize the experimental sensitivity to the parameters under study.  
  Address [Rossi, R. R.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: gsanchez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (down) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001238451900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6149  
Permanent link to this record
 

 
Author Servant, G.; Simakachorn, P. url  doi
openurl 
  Title Ultrahigh frequency primordial gravitational waves beyond the kHz: The case of cosmic strings Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 10 Pages 103538 - 24pp  
  Keywords  
  Abstract We investigate gravitational -wave backgrounds (GWBs) of primordial origin that would manifest only at ultrahigh frequencies, from kilohertz to 100 gigahertz, and leave no signal at LIGO, the Einstein Telescope, the Cosmic Explorer, LISA, or pulsar -timing arrays. We focus on GWBs produced by cosmic strings and make predictions for the GW spectra scanning over high-energy scale (beyond 10 10 GeV) particle physics parameters. Signals from local string networks can easily be as large as the big bang nucleosynthesis/ cosmic microwave background bounds, with a characteristic strain as high as 10 – 26 in the 10 kHz band, offering prospects to probe grand unification physics in the 10 14 -10 17 GeV energy range. In comparison, GWB from axionic strings is suppressed (with maximal characteristic strain similar to 10 – 31 ) due to the early matter era induced by the associated heavy axions. We estimate the needed reach of hypothetical futuristic GW detectors to probe such GWB and, therefore, the corresponding high-energy physics processes. Beyond the information of the symmetry -breaking scale, the high -frequency spectrum encodes the microscopic structure of the strings through the position of the UV cutoffs associated with cusps and kinks, as well as potential information about friction forces on the string. The IR slope, on the other hand, reflects the physics responsible for the decay of the string network. We discuss possible strategies for reconstructing the scalar potential, particularly the scalar self -coupling, from the measurement of the UV cutoff of the GW spectrum.  
  Address [Servant, Geraldine] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: peera.simakachorn@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (down) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001238459100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6150  
Permanent link to this record
 

 
Author del Rio, A.; Ester, E.A. url  doi
openurl 
  Title Electrically charged black hole solutions in semiclassical gravity and dynamics of linear perturbations Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 10 Pages 105022 - 23pp  
  Keywords  
  Abstract We explore quantum corrections of electrically charged black holes subject to vacuum polarization effects of fermion fields in QED. Solving this problem exactly is challenging so we restrict to perturbative corrections that one can obtain using the heat kernel expansion in the one -loop effective action for electrons. Starting from the corrections originally computed by Drummond and Hathrell, we solve the full semiclassical Einstein -Maxwell system of coupled equations to leading order in Planck 's constant and find a new electrically charged, static black hole solution. To probe these quantum corrections, we study electromagnetic and gravitational (axial) perturbations on this background and derive the coupled system of Regge-Wheeler master equations that govern the propagation of these waves. In the classical limit, our results agree with previous findings in the literature. We finally compare these results with those that one can obtain by working out the Euler-Heisenberg effective action. We find again a new electrically charged static black hole spacetime and derive the coupled system of Regge-Wheeler equations governing the propagation of axial electromagnetic and gravitational perturbations. Results are qualitatively similar in both cases. We briefly discuss some challenges found in the numerical computation of the quasinormal mode frequency spectra when quantum corrections are included.  
  Address [del Rio, Adrian] Univ Valencia, Dept Fis Teor, CSIC, Dr Moliner 50, Burjassot 46100, Valencia, Spain, Email: adrian.rio@uv.es;  
  Corporate Author Thesis  
  Publisher (down) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001239211500007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6151  
Permanent link to this record
 

 
Author Navarro, P.; Gimeno, B.; Monzo-Cabrera, J.; Diaz-Morcillo, A.; Blas, D. url  doi
openurl 
  Title Study of a cubic cavity resonator for gravitational waves detection in the microwave frequency range Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 10 Pages 104048 - 19pp  
  Keywords  
  Abstract The direct detection of gravitational waves (GWs) of frequencies above MHz has recently received considerable attention. In this work, we present a precise study of the reach of a cubic cavity resonator to GWs in the microwave range, using for the first time tools allowing to perform realistic simulations. Concretely, the boundary integral -resonant mode expansion (BI-RME) 3D method, which allows us to obtain not only the detected power but also the detected voltage (magnitude and phase), is used here. After analyzing three cubic cavities for different frequencies and working simultaneously with three different degenerate modes at each cavity, we conclude that the sensitivity of the experiment is strongly dependent on the polarization and incidence angle of the GW. The presented experiment can reach sensitivities up to 1 x 10 – 19 at 100 MHz, 2 x 10 – 20 at 1 GHz, and 6 x 10 – 19 at 10 GHz for optimal angles and polarizations, and where in all cases we assumed an integration time of Delta t 1 / 4 1 ms. These results provide a strong case for further developing the use of cavities to detect GWs. Moreover, the possibility of analyzing the detected voltage (magnitude and phase) opens a new interferometric detection scheme based on the combination of the detected signals from multiple cavities.  
  Address [Navarro, Pablo; Monzo-Cabrera, Juan; Diaz-Morcillo, Alejandro] Univ Politecn Cartagena, Dept Tecnol Informac & Comunicac, Plaza Hosp 1, Cartagena 30302, Spain, Email: pablonm.ct.94@gmail.com;  
  Corporate Author Thesis  
  Publisher (down) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001239272400007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6152  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanderswood, I. url  doi
openurl 
  Title Measurement of Ξc+ production in pPb collisions at √sNN=8.16 TeV at LHCb Type Journal Article
  Year 2024 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 109 Issue 4 Pages 044901 - 14pp  
  Keywords  
  Abstract A study of prompt Xi(+)(c) production in proton-lead collisions is performed with the LHCb experiment at a centerof-mass energy per nucleon pair of 8.16 TeV in 2016 in pPb and Pbp collisions with an estimated integrated luminosity of approximately 12.5 and 17.4 nb(-1), respectively. The Xi(+)(c) roduction cross section, as well as the Xi(+)(c) to Lambda(+)(c) production cross-section ratio, are measured as a function of the transverse momentum and rapidity and compared to the latest theory predictions. The forward-backward asymmetry is also measured as a function of the Xi(+)(c) ransverse momentum. The results provide strong constraints on theoretical calculation and are a unique input for hadronization studies in different collision systems.  
  Address [Baptista de Souza Leite, J.; Bediaga, I. B.; Cruz Torres, M.; De Freitas Carneiro Da Graca, U.; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Torres Machado, D.] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher (down) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001202256800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6155  
Permanent link to this record
 

 
Author Jungclaus, A. et al; Gadea, A.; Montaner-Piza, A. doi  openurl
  Title Excited-State Half-Lives in 130 Cd and the Isospin Dependence of Effective Charges Type Journal Article
  Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 132 Issue 22 Pages 222501 - 7pp  
  Keywords  
  Abstract The known I pi = 8 & thorn; 1 , E x = 2129-keV isomer in the semimagic nucleus 130 Cd 82 was populated in the projectile fission of a 238 U beam at the Radioactive Isotope Beam Factory at RIKEN. The high counting statistics of the accumulated data allowed us to determine the excitation energy, E x = 2001.2(7) keV, and half-life, T 1 =2 = 57(3) ns, of the I pi = 6 & thorn; 1 state based on gamma gamma coincidence information. Furthermore, the halflife of the 8 & thorn; 1 state, T 1 =2 = 224(4) ns, was remeasured with high precision. The new experimental information, combined with available data for 134 Sn and large-scale shell model calculations, allowed us to extract proton and neutron effective charges for 132 Sn, a doubly magic nucleus far -off stability. A comparison to analogous information for 100 Sn provides first reliable information regarding the isospin dependence of the isoscalar and isovector effective charges in heavy nuclei.  
  Address [Jungclaus, A.; Acosta, J.; Taprogge, J.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain  
  Corporate Author Thesis  
  Publisher (down) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001250451000017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6160  
Permanent link to this record
 

 
Author Bernabeu, J.; Sabulsky, D.O.; Sanchez, F.; Segarra, A. url  doi
openurl 
  Title Neutrino mass and nature through its mediation in atomic clock interference Type Journal Article
  Year 2024 Publication AVS Quantum Science Abbreviated Journal AVS Quantum Sci.  
  Volume 6 Issue 1 Pages 014410 - 8pp  
  Keywords  
  Abstract The absolute mass of neutrinos and their nature are presently unknown. Aggregate matter has a coherent weak charge leading to a repulsive interaction mediated by a neutrino pair. The virtual neutrinos are non-relativistic at micron distances, giving a distinct behavior for Dirac versus Majorana mass terms. This effective potential allows for the disentanglement of the Dirac or Majorana nature of the neutrino via magnitude and distance dependence. We propose an experiment to search for this potential based on the concept that the density-dependent interaction of an atomic probe with a material source in one arm of an atomic clock interferometer generates a differential phase. The appropriate geometry of the device is selected using the saturation of the weak potential as a guide. The proposed experiment has the added benefit of being sensitive to gravity at micron distances. A strategy to suppress the competing Casimir-Polder interaction, depending on the electronic structure of the material source, as well as a way to compensate the gravitational interaction in the two arms of the interferometer is discussed.  
  Address [Bernabeu, Jose; Segarra, Alejandro] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: jose.bernabeu@uv.es  
  Corporate Author Thesis  
  Publisher (down) AIP Publishing Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001186930100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6118  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva