toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aguilar, A.C.; Binosi, D.; Papavassiliou, J. url  doi
openurl 
  Title Yang-Mills two-point functions in linear covariant gauges Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 91 Issue 8 Pages 085014 - 14pp  
  Keywords  
  Abstract In this paper we use two different but complementary approaches in order to study the ghost propagator of a pure SU(3) Yang-Mills theory quantized in the linear covariant gauges, focusing on its dependence on the gauge-fixing parameter xi in the deep infrared. In particular, we first solve the Schwinger-Dyson equation that governs the dynamics of the ghost propagator, using a set of simplifying approximations, and under the crucial assumption that the gluon propagators for xi > 0 are infrared finite, as is the case in the Landau gauge (xi = 0). Then we appeal to the Nielsen identities, and express the derivative of the ghost propagator with respect to xi in terms of certain auxiliary Green's functions, which are subsequently computed under the same assumptions as before. Within both formalisms we find that for xi > 0 the ghost dressing function approaches zero in the deep infrared, in sharp contrast to what happens in the Landau gauge, where it is known to saturate at a finite (nonvanishing) value. The Nielsen identities are then extended to the case of the gluon propagator, and the xi-dependence of the corresponding gluon masses is derived using as input the results obtained in the previous steps. The result turns out to be logarithmically divergent in the deep infrared; the compatibility of this behavior with the basic assumption of a finite gluon propagator is discussed, and a specific Ansatz is put forth, which readily reconciles both features.  
  Address [Aguilar, A. C.] Univ Estadual Campinas, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352471500006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2189  
Permanent link to this record
 

 
Author Binosi, D.; Chang, L.; Papavassiliou, J.; Qin, S.X.; Roberts, C.D. url  doi
openurl 
  Title Symmetry preserving truncations of the gap and Bethe-Salpeter equations Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 9 Pages 096010 - 7pp  
  Keywords  
  Abstract Ward-Green-Takahashi (WGT) identities play a crucial role in hadron physics, e.g. imposing stringent relationships between the kernels of the one-and two-body problems, which must be preserved in any veracious treatment of mesons as bound states. In this connection, one may view the dressed gluon-quark vertex, Gamma(alpha)(mu), as fundamental. We use a novel representation of Gamma(alpha)(mu), in terms of the gluon-quark scattering matrix, to develop a method capable of elucidating the unique quark-antiquark Bethe-Salpeter kernel, K, that is symmetry consistent with a given quark gap equation. A strength of the scheme is its ability to expose and capitalize on graphic symmetries within the kernels. This is displayed in an analysis that reveals the origin of H-diagrams in K, which are two-particle-irreducible contributions, generated as two-loop diagrams involving the three-gluon vertex, that cannot be absorbed as a dressing of Gamma(alpha)(mu) in a Bethe-Salpeter kernel nor expressed as a member of the class of crossed-box diagrams. Thus, there are no general circumstances under which the WGT identities essential for a valid description of mesons can be preserved by a Bethe-Salpeter kernel obtained simply by dressing both gluon-quark vertices in a ladderlike truncation; and, moreover, adding any number of similarly dressed crossed-box diagrams cannot improve the situation.  
  Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, TN, Italy  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376641000007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2689  
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Figueiredo, C.T.; Papavassiliou, J. url  doi
openurl 
  Title Unified description of seagull cancellations and infrared finiteness of gluon propagators Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 4 Pages 045002 - 22pp  
  Keywords  
  Abstract We present a generalized theoretical framework for dealing with the important issue of dynamical mass generation in Yang-Mills theories, and, in particular, with the infrared finiteness of the gluon propagators, observed in a multitude of recent lattice simulations. Our analysis is manifestly gauge invariant, in the sense that it preserves the transversality of the gluon self-energy, and gauge independent, given that the conclusions do not depend on the choice of the gauge-fixing parameter within the linear covariant gauges. The central construction relies crucially on the subtle interplay between the Abelian Ward identities satisfied by the nonperturbative vertices and a special integral identity that enforces a vast number of “seagull cancellations” among the one-and two-loop dressed diagrams of the gluon Schwinger-Dyson equation. The key result of these considerations is that the gluon propagator remains rigorously massless, provided that the vertices do not contain (dynamical) massless poles. When such poles are incorporated into the vertices, under the pivotal requirement of respecting the gauge symmetry of the theory, the terms comprising the Ward identities conspire in such a way as to still enforce the total annihilation of all quadratic divergences, inducing, at the same time, residual contributions that account for the saturation of gluon propagators in the deep infrared.  
  Address [Aguilar, A. C.; Figueiredo, C. T.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000380962400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2772  
Permanent link to this record
 

 
Author Binosi, D.; Chang, L.; Papavassiliou, J.; Qin, S.X.; Roberts, C.D. url  doi
openurl 
  Title Natural constraints on the gluon-quark vertex Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 3 Pages 031501 - 7pp  
  Keywords  
  Abstract In principle, the strong-interaction sector of the standard model is characterized by a unique renormalization-group-invariant (RGI) running interaction and a unique form for the dressed-gluonquark vertex, Gamma mu; but, whilst much has been learnt about the former, the latter is still obscure. In order to improve this situation, we use a RGI running-interaction that reconciles top-down and bottom-up analyses of the gauge sector in quantum chromodynamics (QCD) to compute dressed-quark gap equation solutions with 1,660,000 distinct Ansatze for Gamma mu. Each one of the solutions is then tested for compatibility with three physical criteria and, remarkably, we find that merely 0.55% of the solutions survive the test. Evidently, even a small selection of observables places extremely tight bounds on the domain of realistic vertex Ansatze. This analysis and its results should prove useful in constraining insightful contemporary studies of QCD and hadronic phenomena.  
  Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, TN, Italy  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000393507500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2953  
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Papavassiliou, J. url  doi
openurl 
  Title Schwinger mechanism in linear covariant gauges Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 3 Pages 034017 - 16pp  
  Keywords  
  Abstract In this work we explore the applicability of a special gluon mass generating mechanism in the context of the linear covariant gauges. In particular, the implementation of the Schwinger mechanism in pure Yang-Mills theories hinges crucially on the inclusion of massless bound-state excitations in the fundamental nonperturbative vertices of the theory. The dynamical formation of such excitations is controlled by a homogeneous linear Bethe-Salpeter equation, whose nontrivial solutions have been studied only in the Landau gauge. Here, the form of this integral equation is derived for general values of the gauge-fixing parameter, under a number of simplifying assumptions that reduce the degree of technical complexity. The kernel of this equation consists of fully dressed gluon propagators, for which recent lattice data are used as input, and of three-gluon vertices dressed by a single form factor, which is modeled by means of certain physically motivated Ansatze. The gauge-dependent terms contributing to this kernel impose considerable restrictions on the infrared behavior of the vertex form factor; specifically, only infrared finite Ansatze are compatible with the existence of nontrivial solutions. When such Ansatze are employed, the numerical study of the integral equation reveals a continuity in the type of solutions as one varies the gauge-fixing parameter, indicating a smooth departure from the Landau gauge. Instead, the logarithmically divergent form factor displaying the characteristic “zero crossing,” while perfectly consistent in the Landau gauge, has to undergo a dramatic qualitative transformation away from it, in order to yield acceptable solutions. The possible implications of these results are briefly discussed.  
  Address [Aguilar, A. C.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000394092900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2987  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva