|   | 
Details
   web
Records
Author Barenboim, G.; Fernandez-Martinez, E.; Mena, O.; Verde, L.
Title The dark side of curvature Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 008 - 17pp
Keywords dark energy experiments; baryon acoustic oscillations; cosmological parameters from CMBR
Abstract Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d(A)(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Omega(k) in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d(A)(z) up to sufficiently high redshifts z similar to 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z) – Omega(k) degeneracy.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: Gabriela.Barenboim@uv.es
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes ISI:000276103000026 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 465
Permanent link to this record
 

 
Author Bernal, N.; Colucci, S.; Josse-Michaux, F.X.; Racker, J.; Ubaldi, L.
Title On baryogenesis from dark matter annihilation Type Journal Article
Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 035 - 30pp
Keywords dark matter theory; baryon asymmetry; leptogenesis
Abstract We study in detail the conditions to generate the baryon asymmetry of the universe from the annihilation of dark matter. This scenario requires a low energy mechanism for thermal baryogenesis, hence we first discuss some of these mechanisms together with the specific constraints due to the connection with the dark matter sector. Then we show that, contrary to what stated in previous studies, it is possible to generate the cosmological asymmetry without adding a light sterile dark sector, both in models with violation and with conservation of B – L. In addition, one of the models we propose yields some connection to neutrino masses.
Address [Bernal, Nicolas] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, BR-01140070 Sao Paulo, Brazil, Email: nicolas@ift.unesp.br;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000326979500035 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1659
Permanent link to this record
 

 
Author Racker, J.
Title Mass bounds for baryogenesis from particle decays and the inert doublet model Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 025 - 23pp
Keywords leptogenesis; baryon asymmetry
Abstract In models for thermal baryogenesis from particle decays, the mass of the decaying particle is typically many orders of magnitude above the TeV scale. We will discuss different ways to lower the energy scale of baryogenesis and present the corresponding lower bounds on the particle's mass. This is done specifically for the inert doublet model with heavy Majorana neutrinos and then we indicate how to extrapolate the results to other scenarios. We also revisit the question of whether or not dark matter, neutrino masses, and the cosmic baryon asymmetry can be explained simultaneously at low energies in the inert doublet model.
Address Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia 46071, Spain, Email: racker@ific.uv.es
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000333667900025 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1744
Permanent link to this record
 

 
Author Aristizabal Sierra, D.; Tortola, M.; Valle, J.W.F.; Vicente, A.
Title Leptogenesis with a dynamical seesaw scale Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 052 - 20pp
Keywords leptogenesis; baryon asymmetry; particle physics – cosmology connection; neutrino theory
Abstract In the simplest type-I seesaw leptogenesis scenario right-handed neutrino annihilation processes are absent. However, in the presence of new interactions these processes are possible and can affect the resulting B – L asymmetry in an important way. A prominent example is provided by models with spontaneous lepton number violation, where the existence of new dynamical degrees of freedom can play a crucial role. In this context, we provide a model-independent discussion of the effects of right-handed neutrino annihilations. We show that in the weak washout regime, as long as the scattering processes remain slow compared with the Hubble expansion rate throughout the relevant temperature range, the efficiency can be largely enhanced, reaching in some cases maximal values. Moreover, the B – L asymmetry yield turns out to be independent upon initial conditions, in contrast to the “standard” case. On the other hand, when the annihilation processes are fast, the right-handed neutrino distribution tends to a thermal one down to low temperatures, implying a drastic suppression of the efficiency which in some cases can render the B – L generation mechanism inoperative.
Address [Sierra, D. Aristizabal; Vicente, A.] Univ Liege, IFPA, Dept Astrophys Geophys & Oceanog, B-4000 Liege, Belgium, Email: daristizabal@ulg.ac.be;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000339802700053 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1868
Permanent link to this record
 

 
Author Garcilazo, H.; Valcarce, A.; Vijande, J.
Title Xi(-)t quasibound state instead of Lambda Lambda nn bound state Type Journal Article
Year 2020 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 44 Issue 2 Pages 024102 - 7pp
Keywords baryon-baryon interactions; few-body systems; Faddeev equations
Abstract The coupled Lambda Lambda nn – Xi-pnn system was studied to investigate whether the inclusion of channel coupling is able to bind the Lambda Lambda nn system. We use a separable potential three-body model of the coupled Lambda Lambda nn – Xi-pnn system and a variational four-body calculation with realistic interactions. Our results exclude the possibility of a bound state by a large margin. Instead, we found a Xi(-)t quasibound state above the Lambda Lambda nn threshold.
Address [Garcilazo, H.] Inst Politecn Nacl, Escuela Super Fis & Matemat, Edificio 9, Mexico City 07738, DF, Mexico, Email: humberto@esfm.ipn.mx;
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000509960900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4267
Permanent link to this record