toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Doncel, M.; Cederwall, B.; Gadea, A.; Gerl, J.; Kojouharov, I.; Martin, S.; Palit, R.; Quintana, B. doi  openurl
  Title Performance and imaging capabilities of the DEGAS high-resolution gamma-ray detector array for the DESPEC experiment at FAIR Type Journal Article
  Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 873 Issue Pages 36-38  
  Keywords Gamma spectroscopy; Imaging; Position-sensitive Ge detectors  
  Abstract Monte Carlo simulations of one of the possible configurations of the imaging phase for the DEGAS spectrometer situated at the DESPEC/NUSTAR experiment have been performed. The geometry consists of the coupling of the high-resolution gamma spectroscopy array, AGATA, with a high-resolution segmented planar detector utilized as an implantation detector in a compact configuration. The sensitivity and performance of the array in terms of efficiency and imaging capability is deduced.  
  Address [Doncel, M.] Univ Liverpool, Dept Phys, Oliver Lodge Lab, Liverpool, Merseyside, England, Email: doncel@liverpool.ac.uk  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000413823100008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3349  
Permanent link to this record
 

 
Author Luo, X.L. et al; Agramunt, J.; Egea, F.J.; Gadea, A.; Huyuk, T. doi  openurl
  Title Pulse pile-up identification and reconstruction for liquid scintillator based neutron detectors Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 897 Issue Pages 59-65  
  Keywords Pile-up; Digital; First-order derivative; Neutron-gamma discrimination; Liquid scintillator  
  Abstract The issue of pulse pile-up is frequently encountered in nuclear experiments involving high counting rates, which will distort the pulse shapes and the energy spectra. A digital method of off-line processing of pile-up pulses is presented. The pile-up pulses were firstly identified by detecting the downward-going zero-crossings in the first-order derivative of the original signal, and then the constituent pulses were reconstructed based on comparing the pile-up pulse with four models that are generated by combining pairs of neutron and.. standard pulses together with a controllable time interval. The accuracy of this method in resolving the pile-up events was investigated as a function of the time interval between two pulses constituting a pile-up event. The obtained results show that the method is capable of disentangling two pulses with a time interval among them down to 20 ns, as well as classifying them as neutrons or gamma rays. Furthermore, the error of reconstructing pile-up pulses could be kept below 6% when successive peaks were separated by more than 50 ns. By applying the method in a high counting rate of pile-up events measurement of the NEutron Detector Array (NEDA), it was empirically found that this method can reconstruct the pile-up pulses and perform neutron-gamma discrimination quite accurately. It can also significantly correct the distorted pulse height spectrum due to pile-up events.  
  Address [Luo, X. L.] Acad Mil Med Sci, Natl Innovat Inst Def Technol, Beijing 100010, Peoples R China, Email: delongtmac@163.com  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000433206800010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3591  
Permanent link to this record
 

 
Author Soderstrom, P.A. et al; Agramunt, J.; Egea, J.; Gadea, A.; Huyuk, T. doi  openurl
  Title Neutron detection and gamma-ray suppression using artificial neural networks with the liquid scintillators BC-501A and BC-537 Type Journal Article
  Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 916 Issue Pages 238-245  
  Keywords BC-501A; BC-537; Digital pulse-shape discrimination; Fast-neutron detection; Liquid scintillator; Neural networks  
  Abstract In this work we present a comparison between the two liquid scintillators BC-501A and BC-537 in terms of their performance regarding the pulse-shape discrimination between neutrons and gamma rays. Special emphasis is put on the application of artificial neural networks. The results show a systematically higher gamma-ray rejection ratio for BC-501A compared to BC-537 applying the commonly used charge comparison method. Using the artificial neural network approach the discrimination quality was improved to more than 95% rejection efficiency of gamma rays over the energy range 150 to 1000 keV for both BC-501A and BC-537. However, due to the larger light output of BC-501A compared to BC-537, neutrons could be identified in BC-501A using artificial neural networks down to a recoil proton energy of 800 keV compared to a recoil deuteron energy of 1200 keV for BC-537. We conclude that using artificial neural networks it is possible to obtain the same gamma-ray rejection quality from both BC-501A and BC-537 for neutrons above a low-energy threshold. This threshold is, however, lower for BC-501A, which is important for nuclear structure spectroscopy experiments of rare reaction channels where low-energy interactions dominates.  
  Address [Soderstrom, P-A] ELI NP, Bucharest 077125, Romania, Email: par.anders@eli-np.ro  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000455016800033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3869  
Permanent link to this record
 

 
Author Valiente-Dobon, J.J. et al; Egea, J.; Huyuk, T.; Gadea, A.; Aliaga, R.; Jurado-Gomez, M.L.; Perez-Vidal, R.M. doi  openurl
  Title NEDA-NEutron Detector Array Type Journal Article
  Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 927 Issue Pages 81-86  
  Keywords NEDA; Nuclear structure; Gamma-ray spectroscopy; Neutron detector; Liquid scintillator; Digital electronics; Neutron-gamma discrimination  
  Abstract The NEutron Detector Array, NEDA, will form the next generation neutron detection system that has been designed to be operated in conjunction with gamma-ray arrays, such as the tracking-array AGATA, to aid nuclear spectroscopy studies. NEDA has been designed to be a versatile device, with high-detection efficiency, excellent neutron-gamma discrimination, and high rate capabilities. It will be employed in physics campaigns in order to maximise the scientific output, making use of the different stable and radioactive ion beams available in Europe. The first implementation of the neutron detector array NEDA with AGATA 1 pi was realised at GANIL. This manuscript reviews the various aspects of NEDA.  
  Address [Valiente-Dobon, J. J.; Jaworski, G.; Goasduff, A.; Egea, J.; Modamio, V; de Angelis, G.; Bissiato, E.; Carturan, S.; Cocconi, P.; Conventi, D.; Deltoro, J. M.; Hadynska-Klekn, K.; Illan, A.; Raggio, A.; Siciliano, M.; Zanon, I] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy, Email: valiente@lnl.infn.it  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462142700010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3956  
Permanent link to this record
 

 
Author Capra, S.; Mengoni, D.; Dueñas, J.A.; John, P.R.; Gadea, A.; Aliaga, R.J.; Dormard, J.J.; Assie, M.; Pullia, A. doi  openurl
  Title Performance of the new integrated front-end electronics of the TRACE array commissioned with an early silicon detector prototype Type Journal Article
  Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 935 Issue Pages 178-184  
  Keywords ASIC; Charge-sensitive preamplifier; Low-noise applications; Particle spectrometry; Dead time; Silicon detector  
  Abstract The spectroscopic performances of the new integrated ASIC (Application-Specific Integrated Circuit) preamplifiers for highly segmented silicon detectors have been evaluated with an early silicon detector prototype of the TRacking Array for light Charged Ejectiles (TRACE). The ASICS were mounted on a custom-designed PCB (Printed Circuit Board) and the detector plugged on it. Energy resolution tests, performed on the same detector before and after irradiation, yielded a resolution of 21 keV and 33 keV FWHM respectively. The output signals were acquired with an array of commercial 100-MHz 14-bit digitizers. The preamplifier chip is equipped with an innovative Fast-Reset device that has two functions: it reduces dramatically the dead time of the preamplifier in case of saturation (from milliseconds to microseconds) and extends the spectroscopic dynamic range of the preamplifier by more than one order of magnitude. Other key points of the device are the low noise and the wide bandwidth.  
  Address [Capra, S.; Pullia, A.] Univ Milan, Dipartimento Fis, Via Celoria 16, IT-20133 Milan, Italy, Email: stefano.capra@unimi.it  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000470063800026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4042  
Permanent link to this record
 

 
Author Egea Canet, F.J. et al; Gadea, A.; Huyuk, T. doi  openurl
  Title A New Front-End High-Resolution Sampling Board for the New-Generation Electronics of EXOGAM2 and NEDA Detectors Type Journal Article
  Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 62 Issue 3 Pages 1056-1062  
  Keywords Acquisition in HP-Ge detectors; high-speed ADCs; low-noise electronics design  
  Abstract This paper presents the final design and results of the FADC Mezzanine for the EXOGAM (EXOtic GAMma array spectrometer) and NEDA (Neutron Detector Array) detectors. The measurements performed include those of studying the effective number of bits, the energy resolution using HP-Ge detectors, as well as timing histograms and discrimination performance. Finally, the conclusion shows how a common digitizing device has been integrated in the experimental environment of two very different detectors which combine both low-noise acquisition and fast sampling rates. Not only the integration fulfilled the expected specifications on both systems, but it also showed how a study of synergy between detectors could lead to the reduction of resources and time by applying a common strategy.  
  Address [Egea Canet, F. J.; Gonzalez, V.; Sanchis, E.] Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain, Email: jaegea@ific.uv.es  
  Corporate Author Thesis  
  Publisher (up) Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000356458000028 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2278  
Permanent link to this record
 

 
Author Egea Canet, F.J. et al; Gadea, A.; Huyuk, T. doi  openurl
  Title Digital Front-End Electronics for the Neutron Detector NEDA Type Journal Article
  Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 62 Issue 3 Pages 1063-1069  
  Keywords Digital systems; front-end electronics; neutron detectors; neutron-gamma discrimination  
  Abstract This paper presents the design of the NEDA (Neutron Detector Array) electronics, a first attempt to involve the use of digital electronics in large neutron detector arrays. Starting from the front-end modules attached to the PMTs (PhotoMultiplier Tubes) and ending up with the data processing workstations, a comprehensive electronic system capable of dealing with the acquisition and pre-processing of the neutron array is detailed. Among the electronic modules required, we emphasize the front-end analog processing, the digitalization, digital pre-processing and communications firmware, as well as the integration of the GTS (Global Trigger and Synchronization) system, already used successfully in AGATA (Advanced Gamma Tracking Array). The NEDA array will be available for measurements in 2016.  
  Address [Egea Canet, F. J.; Gonzalez, V.; Sanchis, E.] Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain, Email: jaegea@ific.uv.es  
  Corporate Author Thesis  
  Publisher (up) Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000356458000029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2279  
Permanent link to this record
 

 
Author Barrientos, D.; Bellato, M.; Bazzacco, D.; Bortolato, D.; Cocconi, P.; Gadea, A.; Gonzalez, V.; Gulmini, M.; Isocrate, R.; Mengoni, D.; Pullia, A.; Recchia, F.; Rosso, D.; Sanchis, E.; Toniolo, N.; Ur, C.A.; Valiente-Dobon, J.J. url  doi
openurl 
  Title Performance of the Fully Digital FPGA-Based Front-End Electronics for the GALILEO Array Type Journal Article
  Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 62 Issue 6 Pages 3134-3139  
  Keywords FPGA; front-end electronics; gamma-ray spectroscopy; germanium detectors  
  Abstract In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. This work presents the first results of the digital FEE system coupled with a GALILEO germanium detector, which has demonstrated the capability to achieve an energy resolution of 1.53% at an energy of 1.33 MeV, similar to the one obtained with a conventional analog system. While keeping a good performance in terms of energy resolution, digital electronics will allow to instrument the full GALILEO array with a versatile system with high integration and low power consumption and costs.  
  Address [Barrientos, D.; Bortolato, D.; Cocconi, P.; Gulmini, M.; Rosso, D.; Toniolo, N.; Valiente-Dobon, J. J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy, Email: diego.barrientos@lnl.infn.it  
  Corporate Author Thesis  
  Publisher (up) Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000372013500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2612  
Permanent link to this record
 

 
Author Krzysiek, M. et al; Gadea, A.; Huyuk, T.; Barrientos, D. doi  openurl
  Title Study of the soft dipole modes in Ce-140 via inelastic scattering of O-17 Type Journal Article
  Year 2014 Publication Physica Scripta Abbreviated Journal Phys. Scr.  
  Volume 89 Issue 5 Pages 054016 - 6pp  
  Keywords pygmy dipole resonances; inelastic scattering; AGATA detector; gamma spectroscopy  
  Abstract The main aim of this study was a deeper understanding of the nuclear structure properties of the soft dipole modes in Ce-140, excited via inelastic scattering of weakly bound O-17 projectiles. An important aim was to investigate the 'splitting' of the PDR into two parts: a low-energy isoscalar component dominated by neutron-skin oscillations and a higher-energy component lying on the tail of the giant dipole resonance of a rather isovector character. This was already observed for this nucleus, investigated in (alpha, alpha') and (gamma,gamma') experiments. The experiment was performed at Laboratori Nazionali di Legnaro, Italy. Inelastic scattering of O-17 ion beam at 20 MeV A(-1) was used to excite the resonance modes in the Ce-140 target. Gamma-rays were registered by five triple clusters of AGATA-Demonstrator and nine large volume scintillators (LaBr3). The scattered O-17 ions were identified by two Delta E – E Si telescopes of the TRACE array mounted inside the scattering chamber. The telescopes consisted of two segmented Si-pad detectors, each of 60 pixels. Very preliminary data have shown a strong domination of the E1 transitions in the 'pygmy' region with a character more similar to the one obtained in alpha scattering experiment.  
  Address [Krzysiek, M.; Kmiecik, M.; Maj, A.; Bednarczyk, P.; Ciemala, M.; Fornal, B.; Grebosz, J.; Mazurek, K.; Meczynski, W.; Zieblinski, M.] Polish Acad Sci, H Niewodniczanski Inst Nucl Phys, Krakow, Poland, Email: mateusz.krzysiek@ifj.edu.pl  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000335785300016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1790  
Permanent link to this record
 

 
Author Doncel, M.; Cederwall, B.; Martin, S.; Quintana, B.; Gadea, A.; Farnea, E.; Algora, A. doi  openurl
  Title Conceptual design of a high resolution Ge array with tracking and imaging capabilities for the DESPEC (FAIR) experiment Type Journal Article
  Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 10 Issue Pages P06010 - 15pp  
  Keywords Gamma detectors (scintillators, CZT, HPG, HgI etc); Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)  
  Abstract We present results of Monte Carlo simulations for the conceptual design of the high-resolution DESPEC Germanium Array Spectrometer (DEGAS) proposed for the Facility for Ion and Antiproton Research (FAIR) under construction at Darmstadt, Germany. The project is carried out in three phases, although only results for the two first phases will be addressed in this work. The first phase will consist of a re-arrangement of the EUROBALL cluster detectors previously used in the RISING campaign at GSI. The second phase is based on coupling AGATA-type triple-cluster detectors with EUROBALL cluster detectors in a compact geometry around the active ion implantation target of DESPEC.  
  Address [Doncel, M.; Cederwall, B.] Royal Inst Technol, Dept Phys, S-10691 Stockholm, Sweden, Email: doncel@kth.se  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000358004200026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2316  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva