|   | 
Details
   web
Records
Author ANTARES and IceCube Collaborations (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 8 Pages 082002 - 13pp
Keywords
Abstract We present the results of the first combined dark matter search targeting the Galactic Center using the ANTARES and IceCube neutrino telescopes. For dark matter particles with masses from 50 to 1000 GeV, the sensitivities on the self-annihilation cross section set by ANTARES and IceCube are comparable, making this mass range particularly interesting for a joint analysis. Dark matter self-annihilation through the tau(+)tau(-) , mu(+)mu(-) , b (b) over bar, and W+W- channels is considered for both the Navarro-Frenk-White and Burkert halo profiles. In the combination of 2101.6 days of ANTARES data and 1007 days of IceCube data, no excess over the expected background is observed. Limits on the thermally averaged dark matter annihilation cross section <sigma(A)upsilon > are set. These limits present an improvement of up to a factor of 2 in the studied dark matter mass range with respect to the individual limits published by both collaborations. When considering dark matter particles with a mass of 200 GeV annihilating through the tau(+)tau(-)channel, the value obtained for the limit is 7.44 x 10(-24) cm(3) s(-1 )for the Navarro-Frenk-White halo profile. For the purpose of this joint analysis, the model parameters and the likelihood are unified, providing a benchmark for forthcoming dark matter searches performed by neutrino telescopes.
Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
Corporate Author Thesis
Publisher (down) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000582565500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4581
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Observation of the cosmic ray shadow of the Sun with the ANTARES neutrino telescope Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 12 Pages 122007 - 7pp
Keywords
Abstract The ANTARES detector is an undersea neutrino telescope in the Mediterranean Sea. The search for pointlike neutrino sources is one of the main goals of the ANTARES telescope, requiring a reliable method to evaluate the detector angular resolution and pointing accuracy. This work describes the study of the Sun “shadow” effect with the ANTARES detector. The shadow is the deficit in the atmospheric muon flux in the direction of the Sun caused by the absorption of the primary cosmic rays. This analysis is based on the data collected between 2008 and 2017 by the ANTARES telescope. The observed statistical significance of the Sun shadow detection is 3.7 sigma, with an estimated angular resolution of 0.59 degrees +/- 0.10 degrees for downward-going muons. The pointing accuracy is found to be consistent with the expectations and no evidence of systematic pointing shifts is observed.
Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: andrey.romanov@ge.infn.it;
Corporate Author Thesis
Publisher (down) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000602850800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4663
Permanent link to this record
 

 
Author Cases, R.; Ros, E.; Zuñiga, J.
Title Measuring radon concentration in air using a diffusion cloud chamber Type Journal Article
Year 2011 Publication American Journal of Physics Abbreviated Journal Am. J. Phys.
Volume 79 Issue 9 Pages 903-908
Keywords cloud chambers; diffusion; radiation effects; radon; student experiments
Abstract Radon concentration in air is a major concern in lung cancer studies. A traditional technique used to measure radon abundance is the charcoal canister method. We propose a novel technique using a diffusion cloud chamber. This technique is simpler and can easily be used for physics demonstrations for high school and university students.
Address [Cases, R; Ros, E; Zuniga, J] Univ Valencia, CSIC, IFIC, Valencia 22085, Spain, Email: ramon.cases@uv.es
Corporate Author Thesis
Publisher (down) Amer Assoc Physics Teachers Amer Inst Physics Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9505 ISBN Medium
Area Expedition Conference
Notes WOS:000294064300003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 724
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Aguilar, J.A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Search for relativistic magnetic monopoles with the ANTARES neutrino telescope Type Journal Article
Year 2012 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 35 Issue 10 Pages 634-640
Keywords
Abstract Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magnetic monopoles with the ANTARES neutrino telescope using a data set of 116 days of live time taken from December 2007 to December 2008. The one observed event is consistent with the expected atmospheric neutrino and muon background, leading to a 90% C.L. upper limit on the monopole flux between 1.3 x 10-(17) and 8.9 x 10(-17) CM-2 s(-1) sr(-1) for monopoles with velocity beta >= 0.625.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000304220600005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1020
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Bigongiari, C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Measurement of the atmospheric nu (mu) energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope Type Journal Article
Year 2013 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 73 Issue 10 Pages 2606 - 12pp
Keywords
Abstract Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric energy spectrum in the energy range 0.1-200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is similar to 25 % higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index gamma (meas)=3.58 +/- 0.12. With the present statistics the contribution of prompt neutrinos cannot be established.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000325778600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1608
Permanent link to this record