toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ikeno, N.; Molina, R.; Oset, E. url  doi
openurl 
  Title Triangle singularity mechanism for the pp -> pi(+)d fusion reaction Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 104 Issue 1 Pages 014614 - 16pp  
  Keywords  
  Abstract We develop a model for the pp -> pi(+)d reaction based on the pp -> Delta(1232)N transition followed by Delta(1232) -> pi N' decay and posterior fusion of NN' to give the deuteron. We show that the triangle diagram depicting this process develops a triangle singularity leading to a large cross section of this reaction compared to ordinary fusion reactions. The results of the calculation also show that the process is largely dominated by the pp system in L = 2 and S = 0, which transfers J = 2 to the final pi(+)d system. This feature is shown to be well suited to provide L = 2, S = 1, and J(tot) = 3 for np in the np(I = 0) pi(-)pp reaction followed by the pp -> pi(+)d reaction, which has been proposed recently, as a means of describing the so far assumed dibaryon d* (2380) peak.  
  Address [Ikeno, Natsumi] Tottori Univ, Dept Agr Life & Environm Sci, Tottori 6808551, Japan, Email: ikeno@tottori-u.ac.jp;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000677555100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4908  
Permanent link to this record
 

 
Author Feijoo, A.; Liang, W.H.; Oset, E. url  doi
openurl 
  Title (DD0)-D-0 pi(+) mass distribution in the production of the T-cc exotic state Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue 11 Pages 114015 - 7pp  
  Keywords  
  Abstract We perform a unitary coupled channel study of the interaction of the D*D-+(0), D*D-0(+) channels and find a state barely bound, very close to isospin I = 0. We take the experimental mass as input and obtain the width of the state and the (DD0 pi-)-D-0+ mass distribution. When the mass of the T-cc state quoted in the experimental paper from raw data is used, the width obtained is of the order of the 80 keV, small compared to the value given in that work. Yet, when the mass obtained in an analysis of the data considering the experimental resolution is taken, the width obtained is about 43 keV and both the width and the (DD0 pi+)-D-0 mass distribution are in remarkable agreement with the results obtained in that latter analysis.  
  Address [Feijoo, A.; Oset, Eulogio] Ctr Mixto Univ Valencia, Dept Fsica Teor, CSIC, Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain, Email: edfeijoo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000734578400007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5066  
Permanent link to this record
 

 
Author Dai, L.R.; Molina, R.; Oset, E. url  doi
openurl 
  Title Prediction of new T-cc states of D* D* and D-s*D* molecular nature Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 1 Pages 016029 - 12pp  
  Keywords  
  Abstract We extend the theoretical framework used to describe the T-cc state as a molecular state of D* D and make predictions for the D* D* and D-s(*) D) systems, finding that they lead to bound states only in the J(P) = 1+ channel. Using input needed to describe the T-cc state, basically one parameter to regularize the loops of the Bethe-Salpeter equation, we find bound states with bindings of the order of MeVand similar widths for the D*D* system, while the D*s D-* system develops a strong cusp around the threshold.  
  Address [Dai, L. R.] Huzhou Univ, Sch Sci, Huzhou 313000, Zhejiang, Peoples R China, Email: dailianrong@zjhu.edu.cn;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000751870200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5112  
Permanent link to this record
 

 
Author Ikeno, N.; Molina, R.; Oset, E. url  doi
openurl 
  Title Zcs states from the D*s over bar D* and J=psi K* coupled channels: Signal in B+ -> J=psi phi K+ decay Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 1 Pages 014012 - 13pp  
  Keywords  
  Abstract We study the D*s over bar D* system in connection with the J=psi K* in coupled channels and observe that, within reasonable values of the cutoff used to regularize the loops, the system does not develop a bound state. However, the JP = 2+ channel has enough attraction to create a strong cusp structure that shows up in the J=psi K+ invariant mass distribution in the B+ -> J=psi phi K+ decay at the D*s over bar D* threshold. Such structure is results should stimulate further measurements around this region, given the fact that cusp effects provide as valuable information on hadron dynamics as resonances themselves.  
  Address [Ikeno, Natsumi] Tottori Univ, Dept Agr Life & Environm Sci, Tottori 6808551, Japan, Email: ikeno@tottori-u.ac.jp;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000743807000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5190  
Permanent link to this record
 

 
Author Dai, L.R.; Molina, R.; Oset, E. url  doi
openurl 
  Title Looking for the exotic X-0(2866) and its J(P)=1(+) partner in the (B)over-bar(0) -> D-(*) + K- K-(*)0 reactions Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 9 Pages 096022 - 7pp  
  Keywords  
  Abstract We propose two reactions, (B) over bar (0) -> (KD+K-)-D-0 and (B) over bar (0) -> K*D-0*K-+(-), which have been already measured at Belle, to look into the J(P) = 0(+), X-0(2866) state and a 1(+) partner of molecular D*(K) over bar* nature by looking at the D+K- and D*K-+(-) invariant mass distributions, respectively. Very clear peaks over the background are predicted and the branching ratios for the production of these states are evaluated to facilitate the task of determining the needed statistics for their observation. We conclude that with the upgrade of Belle II clear peaks should be seen in both reactions for the two resonances discussed.  
  Address [Dai, L. R.] Huzhou Univ, Sch Sci, Huzhou 313000, Zhejiang, Peoples R China, Email: dailianrong@zjhu.edu.cn;  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000807763800004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5250  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva