toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ATLAS Collaboration (Abat, E. et al); Castillo Gimenez, V.; Ferrer, A.; Gonzalez, V.; Higon-Rodriguez, E.; Mitsou, V.A.; Ruiz, A.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls Ferrer, J.A. doi  openurl
  Title Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV Type Journal Article
  Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 621 Issue 1-3 Pages 134-150  
  Keywords ATLAS; Calorimetry; Test-beam; Calibration; Simulation  
  Abstract A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20-350 GeV and beam impact points and angles corresponding to pseudo-rapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit.  
  Address [Abata, E.; Arik, E.; Cetin, S. A.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey, Email: atlassecretariat@cern.ch  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000281109100019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 389  
Permanent link to this record
 

 
Author Labiche, M. et al; Caballero, L.; Rubio, B. url  doi
openurl 
  Title TIARA: A large solid angle silicon array for direct reaction studies with radioactive beams Type Journal Article
  Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 614 Issue 3 Pages 439-448  
  Keywords Position sensitive silicon detectors; Nucleon transfer reactions; Radioactive beams; Inverse kinematics  
  Abstract A compact, quasi-4 pi position sensitive silicon array. TIARA, designed to study direct reactions induced by radioactive beams in inverse kinematics is described here. The Transfer and Inelastic All-angle Reaction Array (TIARA) consists of 8 resistive charge division detectors forming an octagonal barrel around the target and a set of double-sided silicon-strip annular detectors positioned at each end of the barrel. The detector was coupled to the gamma-ray array EXOGAM and the spectrometer VAMOS at the GANIL Laboratory to demonstrate the potential of such an apparatus with radioactive beams. The N-14(d,p)N-15 reaction, well known in direct kinematics, has been carried out in inverse kinematics for that purpose. The observation of the N-15 ground state and excited states at 7.16 and 7.86 MeV is presented here as well as the comparison of the measured proton angular distributions with DWBA calculations. Transferred l-values are in very good agreement with both theoretical calculations and previous experimental results obtained in direct kinematics.  
  Address [Labiche, M.; Lemmon, R. C.; Appleton, S.; Faiz, K.; Pucknell, V. F. E.; Warner, D. D.] STFC Daresbury Lab, Nucl Phys Grp, Warrington WA4 4AD, Cheshire, England, Email: marc.labiche@stfc.ac.uk  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276001800008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 477  
Permanent link to this record
 

 
Author Wurm, M. et al; Mena, O. url  doi
openurl 
  Title The next-generation liquid-scintillator neutrino observatory LENA Type Journal Article
  Year 2012 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 35 Issue 11 Pages 685-732  
  Keywords Neutrino detectors; Liquid-scintillator detectors; Low-energy neutrinos; Proton decay; Longbaseline neutrino beams  
  Abstract As part of the European LAGUNA design study on a next-generation neutrino detector, we propose the liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) as a multipurpose neutrino observatory. The outstanding successes of the Borexino and KamLAND experiments demonstrate the large potential of liquid-scintillator detectors in low-energy neutrino physics. Low energy threshold, good energy resolution and efficient background discrimination are inherent to the liquid-scintillator technique. A target mass of 50 kt will offer a substantial increase in detection sensitivity. At low energies, the variety of detection channels available in liquid scintillator will allow for an energy and flavor-resolved analysis of the neutrino burst emitted by a galactic Supernova. Due to target mass and background conditions, LENA will also be sensitive to the faint signal of the Diffuse Supernova Neutrino Background. Solar metallicity, time-variation in the solar neutrino flux and deviations from MSW-LMA survival probabilities can be investigated based on unprecedented statistics. Low background conditions allow to search for dark matter by observing rare annihilation neutrinos. The large number of events expected for geoneutrinos will give valuable information on the abundances of Uranium and Thorium and their relative ratio in the Earth's crust and mantle. Reactor neutrinos enable a high-precision measurement of solar mixing parameters. A strong radioactive or pion decay-at-rest neutrino source can be placed close to the detector to investigate neutrino oscillations for short distances and sub-MeV to MeV energies. At high energies, LENA will provide a new lifetime limit for the SUSY-favored proton decay mode into kaon and antineutrino, surpassing current experimental limits by about one order of magnitude. Recent studies have demonstrated that a reconstruction of momentum and energy of GeV particles is well feasible in liquid scintillator. Monte Carlo studies on the reconstruction of the complex event topologies found for neutrino interactions at multi-GeV energies have shown promising results. If this is confirmed. LENA might serve as far detector in a long-baseline neutrino oscillation experiment currently investigated in LAGUNA-LBNO.  
  Address [Wurm, Michael; Bick, Daniel; Hagner, Caren; Lorenz, Sebastian] Univ Hamburg, Inst Expt Phys, Hamburg, Germany, Email: michael.wurm@desy.de  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000304787800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1054  
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Escudero, L.; Gomez-Cadenas, J.J.; Hansen, C.; Monfregola, L.; Sorel, M.; Stamoulis, P. url  doi
openurl 
  Title Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 694 Issue Pages 211-223  
  Keywords Neutrino oscillation; T2K; Neutrino beam; Neutrino detector; Extruded scintillator; Wavelength shifting fiber  
  Abstract Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The normalized event rate is measured with 4% precision. (C) 2012 Elsevier B.V. All rights reserved.  
  Address [Gomi, S.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Kawamuko, H.; Kikawa, T.; Kubo, H.; Kubota, J.; Kurimoto, Y.; Litchfield, R. P.; Matsuoka, K.; Minamino, A.; Murakami, A.; Nagai, N.; Nakaya, T.; Nitta, K.; Nobuhara, T.; Otani, M.; Suzuki, K.; Taguchi, M.; Takahashi, S.; Yamauchi, T.] Kyoto Univ, Dept Phys, Kyoto 606, Japan, Email: masashi.o@scphys.kyoto-u.ac.jp  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311020500031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1239  
Permanent link to this record
 

 
Author Vilella, E.; Alonso, O.; Trenado, J.; Vila, A.; Casanova, R.; Vos, M.; Garrido, L.; Dieguez, A. url  doi
openurl 
  Title A test beam setup for the characterization of the Geiger-mode avalanche photodiode technology for particle tracking Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 694 Issue Pages 199-204  
  Keywords The Geiger-mode avalanche photodiode (GAPD); CMOS; EUDET/AIDA telescope; Schottky detector; Test beam; Trigger logic unit (TLU)  
  Abstract It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite gain and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection still remains unexplored. In this contribution, we are going to expose different steps that we have taken in order to prove the efficiency of the Geiger mode avalanche photodiodes in the aforementioned field. In particular, we will present a setup for the characterization of these sensors in a test beam. The expected results of the test beam at DESY and CERN have been simulated with Geant4 and will also be exposed.  
  Address [Vilella, E.; Alonso, O.; Vila, A.; Casanova, R.; Dieguez, A.] Univ Barcelona, Dept Elect, E-08028 Barcelona, Spain, Email: evilella@el.ub.es  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311020500029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1256  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva