toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Studen, A.; Brzezinski, K.; Chesi, E.; Cindro, V.; Clinthorne, N.H.; Cochran, E.; Grosicar, B.; Grkovski, M.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuz, M.; Stankova, V.; Weilhammer, P.; Zontar, D. doi  openurl
  Title Silicon detectors for combined MR-PET and MR-SPECT imaging Type Journal Article
  Year 2013 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 702 Issue Pages 88-90  
  Keywords PET; Silicon detectors; SPECT  
  Abstract Silicon based devices can extend PET-MR and SPECT-MR imaging to applications, where their advantages in performance outweigh benefits of high statistical counts. Silicon is in many ways an excellent detector material with numerous advantages, among others: excellent energy and spatial resolution, mature processing technology, large signal to noise ratio, relatively low price, availability, versatility and malleability. The signal in silicon is also immune to effects of magnetic field at the level normally used in MR devices. Tests in fields up to 7 T were performed in a study to determine effects of magnetic field on positron range in a silicon PET device. The curvature of positron tracks in direction perpendicular to the field's orientation shortens the distance between emission and annihilation point of the positron. The effect can be fully appreciated for a rotation of the sample for a fixed field direction, compressing range in all dimensions. A popular Ga-68 source was used showing a factor of 2 improvement in image noise compared to zero field operation. There was also a little increase in noise as the reconstructed resolution varied between 2.5 and 1.5 mm. A speculative applications can be recognized in both emission modalities, SPECT and PET. Compton camera is a subspecies of SPECT, where a silicon based scatter as a MR compatible part could inserted into the MR bore and the secondary detector could operate in less constrained environment away from the magnet. Introducing a Compton camera also relaxes requirements of the radiotracers used, extending the range of conceivable photon energies beyond 140.5 keV of the Tc-99m. In PET, one could exploit the compressed sub-millimeter range of positrons in the magnetic field. To exploit the advantage, detectors with spatial resolution commensurate to the effect must be used with silicon being an excellent candidate. Measurements performed outside of the MR achieving spatial resolution below 1 mm are reported.  
  Address [Studen, A.; Cindro, V.; Grosicar, B.; Grkovski, M.; Mikuz, M.; Zontar, D.] Jozef Stefan Inst, Ljubljana, Slovenia, Email: andrej.studen@ijs.si  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314682300026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1331  
Permanent link to this record
 

 
Author Grkovski, M.; Brzezinski, K.; Cindro, V.; Clinthorne, N.H.; Kagan, H.; Lacasta, C.; Mikuz, M.; Solaz, C.; Studen, A.; Weilhammer, P.; Zontar, D. doi  openurl
  Title Evaluation of a high resolution silicon PET insert module Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 788 Issue Pages 86-94  
  Keywords Positron emission tomography; Silicon detectors; PET insert; Image reconstruction  
  Abstract Conventional PET systems can be augmented with additional detectors placed in close proximity of the region of interest. We developed a high resolution PET insert module to evaluate the added benefit of such a combination. The insert module consists of two back-to-back 1 mm thick silicon sensors, each segmented into 1040 1 mm(2) pads arranged in a 40 by 26 array. A set of 16 VATAGP7.1 ASICs and a custom assembled data acquisition board were used to read out the signal from the insert module. Data were acquired in slice (20) geometry with a Jaszczak phantom (rod diameters of 12-4.8 mm) Filled with F-18-FDG and the images were reconstructed with ML-EM method. Both data with full and limited angular coverage from the insert module were considered and three types of coincidence events were combined. The ratio of high-resolution data that substantially improves quality of the reconstructed image for the region near the surface of the insert module was estimated to be about 4%. Results from our previous studies suggest that such ratio could be achieved at a moderate technological expense by using an equivalent of two insert modules (an effective sensor thickness of 4 mm).  
  Address [Grkovski, Milan; Cindro, Vladimir; Mikuz, Marko; Studen, Andrej; Zontar, Dejan] Jozef Stefan Inst, Ljubljana, Slovenia, Email: milan.grkovski@ijs.si  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000354870700016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2232  
Permanent link to this record
 

 
Author Llosa, G. doi  openurl
  Title Recent developments in photodetection for medical applications Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 787 Issue Pages 353-357  
  Keywords Detectors; Photodetectors; Medical applications; PET; SPECT; Hadron Therapy  
  Abstract The use of the most advanced technology in medical imaging results in the development of high performance detectors that can significantly improve the performance of the medical devices employed in hospitals. Scintillator crystals coupled to photodetectors remain to be essential detectors in terms of performance and cost for medical imaging applications in different imaging modalities. Recent advances in photodetectors result in an increase of the performance of the medical scanners. Solid state detectors can provide substantial performance improvement, but are more complex to integrate into clinical detectors due mainly to their higher cost. Solid state photodetectors (APDs, SiPMs) have made new detector concepts possible and have led to improvements in different imaging modalities. Recent advances in detectors for medical imaging are revised.  
  Address UVEG, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: gabriela.llosa@ific.uv.es  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000354869900079 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2233  
Permanent link to this record
 

 
Author Becker, R.; Buck, A.; Casella, C.; Dissertori, G.; Fischer, J.; Howard, A.; Ito, M.; Khateri, P.; Lustermann, W.; Oliver, J.F.; Roser, U.; Warnock, G.; Weber, B. doi  openurl
  Title The SAFIR experiment: Concept, status and perspectives Type Journal Article
  Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 845 Issue Pages 648-651  
  Keywords Positron Emission Tomography (PET); Hybrid PET/MRI; SiPM  
  Abstract The SAFIR development represents a novel Positron Emission Tomography (PET) detector, conceived for preclinical fast acquisitions inside the bore of a Magnetic Resonance Imaging (MRI) scanner. The goal is hybrid and simultaneous PET/MRI dynamic studies at unprecedented temporal resolutions of a few seconds. The detector relies on matrices of scintillating LSO-based crystals coupled one-to-one with SiPM arrays and readout by fast ASIC5 with excellent timing resolution and high rate capabilities. The paper describes the detector concept and the initial results in terms of simulations and characterisation measurements.  
  Address [Becker, Robert; Casella, Chiara; Dissertori, Gunther; Fischer, Jannis; Howard, Alexander; Ito, Mikiko; Khateri, Parisa; Lustermann, Werner; Roeser, Ulf] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland, Email: chiara.casella@cern.ch  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000394556300153 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2957  
Permanent link to this record
 

 
Author Blume, M.; Martinez-Moller, A.; Keil, A.; Navab, N.; Rafecas, M. doi  openurl
  Title Joint Reconstruction of Image and Motion in Gated Positron Emission Tomography Type Journal Article
  Year 2010 Publication IEEE Transactions on Medical Imaging Abbreviated Journal IEEE Trans. Med. Imaging  
  Volume 29 Issue 11 Pages 1892-1906  
  Keywords Gating; motion compensation; positron emission tomography (PET); reconstruction  
  Abstract We present a novel intrinsic method for joint reconstruction of both image and motion in positron emission tomography (PET). Intrinsic motion compensation methods exclusively work on the measured data, without any external motion measurements. Most of these methods separate image from motion estimation: They use deformable image registration/optical flow techniques in order to estimate the motion from individually reconstructed gates. Then, the image is estimated based on this motion information. With these methods, a main problem lies in the motion estimation step, which is based on the noisy gated frames. The more noise is present, the more inaccurate the image registration becomes. As we show both visually and quantitatively, joint reconstruction using a simple deformation field motion model can compete with state-of-the-art image registration methods which use robust multilevel B-spline motion models.  
  Address [Blume, Moritz; Rafecas, Magdalena] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: moritz.blume@cs.tum.edu  
  Corporate Author Thesis  
  Publisher (up) Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-0062 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283941800007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 340  
Permanent link to this record
 

 
Author Tetrault, M.A.; Oliver, J.F.; Bergeron, M.; Lecomte, R.; Fontaine, R. doi  openurl
  Title Real Time Coincidence Detection Engine for High Count Rate Timestamp Based PET Type Journal Article
  Year 2010 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 57 Issue 1 Pages 117-124  
  Keywords Coincidence detection; Positron Emission Tomography (PET)  
  Abstract Coincidence engines follow two main implementation flows: timestamp based systems and AND-gate based systems. The latter have been more widespread in recent years because of its lower cost and high efficiency. However, they are highly dependent on the selected electronic components, they have limited flexibility once assembled and they are customized to fit a specific scanner's geometry. Timestamp based systems are gathering more attention lately, especially with high channel count fully digital systems. These new systems must however cope with important singles count rates. One option is to record every detected event and postpone coincidence detection offline. For daily use systems, a real time engine is preferable because it dramatically reduces data volume and hence image preprocessing time and raw data management. This paper presents the timestamp based coincidence engine for the LabPET(TM), a small animal PET scanner with up to 4608 individual readout avalanche photodiode channels. The engine can handle up to 100 million single events per second and has extensive flexibility because it resides in programmable logic devices. It can be adapted for any detector geometry or channel count, can be ported to newer, faster programmable devices and can have extra modules added to take advantage of scanner-specific features. Finally, the user can select between full processing mode for imaging protocols and minimum processing mode to study different approaches for coincidence detection with offline software.  
  Address [Tetrault, M. -A.; Fontaine, R.] Univ Sherbrooke, Dept Elect & Comp Engn, Sherbrooke, PQ J1K 2R1, Canada, Email: Marc-Andre.Tetrault@USherbrooke.ca  
  Corporate Author Thesis  
  Publisher (up) Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000274391000016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 500  
Permanent link to this record
 

 
Author Linhart, V.; Burdette, D.; Chessi, E.; Cindro, V.; Clinthorne, N.H.; Cochran, E.; Grosicar, B.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuz, M.; Stankova, V.; Studen, A.; Weilhammer, P.; Zontar, D. doi  openurl
  Title Spectroscopy study of imaging devices based on silicon Pixel Array Detector coupled to VATAGP7 read-out chips Type Journal Article
  Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 6 Issue Pages C01092 - 8pp  
  Keywords Gamma camera, SPECT, PET PET/CT, coronary CT angiography (CTA); Compton imaging  
  Abstract Spectroscopic and timing response studies have been conducted on a detector module consisting of a silicon Pixel Array Detector bonded on two VATAGP7 read-out chips manufactured by Gamma-Medica Ideas using laboratory gamma sources and the internal calibration facilities (the calibration system of the read-out chips). The performed tests have proven that the chips have (i) non-linear calibration curves which can be approximated by power functions, (ii) capability to measure the energy of photons with energy resolution better than 2 keV (exact range and resolution depend on experimental setup), (iii) the internal calibration facility which provides 6 out of 16 available internal calibration charges within our region of interest (spanning the Compton edge of 511 keV photons). The peaks induced by the internal calibration facility are suitable for a fit of the calibration curves. However, they are not suitable for measurements of equivalent noise charge because their full width at half maximum varies with their amplitude. These facts indicate that the VATAGP7 chips are useful and precise tools for a wide variety of spectroscopic devices. We have also explored time walk of the module and peaking time of the spectroscopy signals provided by the chips. We have observed that (iv) the time walk is caused partly by the peaking time of the signals provided by the fast shaper of the chips and partly by the timing uncertainty related to the varying position of the photon interaction, (v) the peaking time of the spectroscopy signals provided by the chips increases with increasing pulse height.  
  Address [Linhart, V.; Lacasta, C.; Llosa, G.; Stankova, V.] UVEG, CSIC, IFIC, Expt Phys Dept,Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Vladimir.Linhart@ific.uv.es  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291345600097 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 645  
Permanent link to this record
 

 
Author Ros, A.; Lerche, C.W.; Sebastia, A.; Sanchez, F.; Benlloch, J.M. doi  openurl
  Title Retroreflector arrays for better light collection efficiency of gamma-ray imaging detectors with continuous scintillation crystals without DOI misestimation Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages P04009 - 14pp  
  Keywords Gamma detectors (scintillators, CZT, HPG, HgI etc); Interaction of radiation with matter; Gamma camera, SPECT, PET PET/CT, coronary CT angiography (CTA); Detector design and construction technologies and materials  
  Abstract A method to improve light collection efficiency of gamma-ray imaging detectors by using retroreflector arrays has been tested, simulations of the behaviour of the scintillation light illuminating the retroreflector surface have been made. Measurements including retroreflector arrays in the setup have also been taken. For the measurements, positron emission tomography (PET) detectors with continuous scintillation crystals have been used. Each detector module consists of a continuous LSO-scintillator of dimensions 49x49x10 mm(3) and a H8500 position-sensitive photo-multiplier (PSPMT) from Hamamatsu. By using a continuous scintillation crystal, the scintillation light distribution has not been destroyed and the energy, the centroids along the x- and y-direction and the depth of interaction (DOI) can be estimated. Simulations have also been run taking into account the use of continuous scintillation crystals. Due to the geometry of the continuous scintillation crystals in comparison with pixelated crystals, a good light collection efficiency is necessary to correctly reconstruct the impact point of the gamma-ray. The aim of this study is to investigate whether micro-machine retro-reflectors improve light yield without misestimation of the impact point. The results shows an improvement on the energy and centroid resolutions without worsening the depth of interaction resolution. Therefore it can be concluded that using retroreflector arrays at the entrance side of the scintillation crystal improves light collection efficiency without worsening the impact point estimation.  
  Address [Ros, A.] Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: anrogar2@i3m.upv.es  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000336123800049 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1798  
Permanent link to this record
 

 
Author Gillam, J.E.; Solevi, P.; Oliver, J.F.; Casella, C.; Heller, M.; Joram, C.; Rafecas, M. doi  openurl
  Title Sensitivity recovery for the AX-PET prototype using inter-crystal scattering events Type Journal Article
  Year 2014 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 59 Issue 15 Pages 4065-4083  
  Keywords positron emission tomography (PET); inter-crystal scattering; sensitivity  
  Abstract The development of novel detection devices and systems such as the AX-positron emission tomography (PET) demonstrator often introduce or increase the measurement of atypical coincidence events such as inter-crystal scattering (ICS). In more standard systems, ICS events often go undetected and the small measured fraction may be ignored. As the measured quantity of such events in the data increases, so too does the importance of considering them during image reconstruction. Generally, treatment of ICS events will attempt to determine which of the possible candidate lines of response (LoRs) correctly determine the annihilation photon trajectory. However, methods of assessment often have low success rates or are computationally demanding. In this investigation alternative approaches are considered. Experimental data was taken using the AX-PET prototype and a NEMA phantom. Three methods of ICS treatment were assessed-each of which considered all possible candidate LoRs during image reconstruction. Maximum likelihood expectation maximization was used in conjunction with both standard (line-like) and novel (V-like in this investigation) detection responses modeled within the system matrix. The investigation assumed that no information other than interaction locations was available to distinguish between candidates, yet the methods assessed all provided means by which such information could be included. In all cases it was shown that the signal to noise ratio is increased using ICS events. However, only one method, which used full modeling of the ICS response in the system matrix-the V-like model-provided enhancement in all figures of merit assessed in this investigation. Finally, the optimal method of ICS incorporation was demonstrated using data from two small animals measured using the AX-PET demonstrator.  
  Address [Gillam, John E.; Solevi, Paola; Oliver, Josep F.; Rafecas, Magdalena] Univ Valencia, CSIC, IFIC, Valencia, Spain, Email: john.gillam@sydney.edu.au  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000340056800006 Approved no  
  Is ISI yes International Collaboration  
  Call Number IFIC @ pastor @ Serial 1879  
Permanent link to this record
 

 
Author Brzezinski, K.; Oliver, J.F.; Gillam, J.; Rafecas, M. doi  openurl
  Title Study of a high-resolution PET system using a Silicon detector probe Type Journal Article
  Year 2014 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 59 Issue 20 Pages 6117-6140  
  Keywords PET; high-resolution imaging; Si detectors; PET insert  
  Abstract A high-resolution silicon detector probe, in coincidence with a conventional PET scanner, is expected to provide images of higher quality than those achievable using the scanner alone. Spatial resolution should improve due to the finer pixelization of the probe detector, while increased sensitivity in the probe vicinity is expected to decrease noise. A PET-probe prototype is being developed utilizing this principle. The system includes a probe consisting of ten layers of silicon detectors, each a 80 x 52 array of 1 x 1 x 1 mm(3) pixels, to be operated in coincidence with a modern clinical PET scanner. Detailed simulation studies of this system have been performed to assess the effect of the additional probe information on the quality of the reconstructed images. A grid of point sources was simulated to study the contribution of the probe to the system resolution at different locations over the field of view (FOV). A resolution phantom was used to demonstrate the effect on image resolution for two probe positions. A homogeneous source distribution with hot and cold regions was used to demonstrate that the localized improvement in resolution does not come at the expense of the overall quality of the image. Since the improvement is constrained to an area close to the probe, breast imaging is proposed as a potential application for the novel geometry. In this sense, a simplified breast phantom, adjacent to heart and torso compartments, was simulated and the effect of the probe on lesion detectability, through measurements of the local contrast recovery coefficient-to-noise ratio (CNR), was observed. The list-mode ML-EM algorithm was used for image reconstruction in all cases. As expected, the point spread function of the PET-probe system was found to be non-isotropic and vary with position, offering improvement in specific regions. Increase in resolution, of factors of up to 2, was observed in the region close to the probe. Images of the resolution phantom showed visible improvement in resolution when including the probe in the simulations. The image quality study demonstrated that contrast and spill-over ratio in other areas of the FOV were not sacrificed for this enhancement. The CNR study performed on the breast phantom indicates increased lesion detectability provided by the probe.  
  Address [Brzezinski, K.; Oliver, J. F.; Gillam, J.; Rafecas, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: brzezinski@ific.uv.es  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000343092300011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1963  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva