toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Baglio, J.; Campanario, F.; Glaus, S.; Muhlleitner, M.; Ronca, J.; Spira, M. url  doi
openurl 
  Title gg -> HH: Combined uncertainties Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue 5 Pages 056002 - 5pp  
  Keywords  
  Abstract In this paper we discuss the combination of the usual renormalization and factorization scale uncertainties of Higgs-pair production via gluon fusion with the novel uncertainties originating from the scheme and scale choice of the virtual top mass. Moreover, we address the uncertainties related to the top-mass definition for different values of the trilinear Higgs coupling and their combination with the other uncertainties.  
  Address [Baglio, J.] CERN, Theory Phys Dept, CH-1211 Geneva 23, Switzerland  
  Corporate Author Thesis  
  Publisher (up) Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000627571800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4762  
Permanent link to this record
 

 
Author Campanario, F.; Rauch, M.; Sapeta, S. url  doi
openurl 
  Title W+W- production at high transverse momenta beyond NLO Type Journal Article
  Year 2014 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 879 Issue Pages 65-79  
  Keywords  
  Abstract Pair production of W gauge bosons is an important process at the LHC entering many experimental analyses, both as background in new-physics searches or Higgs measurements and as signal in precision studies and tests of the Standard Model. Therefore, accurate predictions for this class of processes are of great interest in order to exploit the full potential of LHC measurements. We use the LoopSim method to combine NLO QCD results for WW and WW + jet, as well as the loop-squared gluon-fusion contribution, to obtain approximate NNLO predictions for WW production. The cross sections are calculated with VBFNLO and include leptonic decays of the W bosons as well as finite-width and off-shell effects. We find that the size of the additional corrections beyond NLO can be significant and well outside of the NLO error bands given by renormalization and factorization scale variation. Applying a jet veto, we observe further negative corrections at NNLO. which we relate to the presence of large Sudakov logarithms.  
  Address [Campanario, Francisco] Univ Valencia, CSIC, IFIC, Div Theory, E-46980 Valencia, Spain, Email: francisco.campanario@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000332352600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1734  
Permanent link to this record
 

 
Author Campanario, F.; Czyz, H.; Gluza, J.; Gunia, M.; Riemann, T.; Rodrigo, G.; Yundin, V. url  doi
openurl 
  Title Complete QED NLO contributions to the reaction e(+)e(-) -> mu(+)mu(-)gamma and their implementation in the event generator PHOKHARA Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 114 - 27pp  
  Keywords B-Physics; Standard Model  
  Abstract KLOE and Babar have an observed discrepancy of 2% to 5% in the invariant pion pair production cross section. These measurements are based on approximate NLO mu(+)mu(-)gamma cross section predictions of the Monte Carlo event generator PHOKHARA7.0. In this article, the complete NLO radiative corrections to mu(+)mu(-)gamma production are calculated and implemented in the Monte Carlo event generator PHOKHARA9.0. Numerical reliability is guaranteed by two independent approaches to the real and the virtual corrections. The novel features include the contribution of pentagon diagrams in the virtual corrections, which form a gauge-invariant set when combined with their box diagram partners. They may contribute to certain distributions at the percent level. Also the real emission was complemented with two-photon final state emission contributions not included in the generator PHOKHARA7.0. We demonstrate that the numerical influence reaches, for realistic charge-averaged experimental setups, not more than 0.1% at KLOE and 0.3% at BaBar energies. As a result, we exclude the approximations in earlier versions of PHOKHARA as origin of the observed experimental discrepancy.  
  Address [Campanario, F.; Rodrigo, G.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46980, Spain, Email: francisco.campanario@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000332506600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1725  
Permanent link to this record
 

 
Author Campanario, F.; Kerner, M.; Ninh, D.L.; Zeppenfeld, D. url  doi
openurl 
  Title Next-to-leading order QCD corrections to ZZ production in association with two jets Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 148 - 14pp  
  Keywords NLO Computations; Hadronic Colliders  
  Abstract We present a calculation of next-to-leading order QCD corrections to QCD-induced ZZ production in association with two jets at hadron colliders. Both Z bosons decay leptonically with all off-shell effects, virtual photon contributions and spin-correlation effects fully taken into account. This process is an important background to weak boson scattering and to searches for signals of new physics beyond the Standard Model. As expected, the next-to-leading order corrections reduce significantly the scale uncertainty and show a non-trivial phase space dependence in kinematic distributions. Our code will be publicly available as part of the parton level Monte Carlo program VBFNLO.  
  Address [Campanario, Francisco] Univ Valencia, CSIC, Div Theory, IFIC, E-46980 Valencia, Spain, Email: francisco.campanario@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000340051900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1882  
Permanent link to this record
 

 
Author Campanario, F.; Kerner, M.; Ninh, L.D.; Zeppenfeld, D. url  doi
openurl 
  Title Next-to-leading order QCD corrections to Wgamma production in association with two jets Type Journal Article
  Year 2014 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 74 Issue 5 Pages 2882 - 9pp  
  Keywords  
  Abstract The QCD-induced production channels in association with two jets are computed at next-to-leading order QCD accuracy. The W bosons decay leptonically and full off-shell and finite width effects as well as spin correlations are taken into account. These processes are important backgrounds to beyond Standard Model physics searches and also relevant to test the nature of the quartic gauge couplings of the Standard Model. The next-to-leading order corrections reduce the scale uncertainty significantly and show a non-trivial phase space dependence. Our code will be publicly available as part of the parton level Monte Carlo program VBFNLO.  
  Address [Campanario, Francisco] Univ Valencia, CSIC, IFIC, Div Theory, Valencia 46980, Spain, Email: francisco.campanario@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000340092900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1888  
Permanent link to this record
 

 
Author Campanario, F.; Kubocz, M. url  doi
openurl 
  Title Higgs boson CP-properties of the gluonic contributions in Higgs plus three jet production via gluon fusion at the LHC Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 173 - 16pp  
  Keywords QCD Phenomenology; Monte Carlo Simulations  
  Abstract in high energy hadronic collisions, a general CP-violating Higgs boson Phi with accompanying jets can be efficiently produced via gluon fusion, which is mediated by heavy quark loops. In this article, we study the dominant sub-channel gg -> ggg Phi of the gluon fusion production process with triple real emission corrections at order alpha(5)(s). We go beyond the heavy top-quark approximation and include the full mass dependence of the top- and bottom-quark contributions. Furthermore, in a specific model we demonstrate the features of our program and show the impact of bottom-quark loop contributions in combination with large values of tan beta on differential distributions sensitive to CP-rneasurements of the Higgs boson.  
  Address [Campanario, Francisco] Univ Valencia CSIC, IFIC, Div Theory, E-46100 Valencia, Spain, Email: francisco.campanario@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000344652800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2007  
Permanent link to this record
 

 
Author Campanario, F.; Kerner, M.; Ninh, L.D.; Zeppenfeld, D. url  doi
openurl 
  Title Z gamma production in association with two jets at next-to-leading order QCD Type Journal Article
  Year 2014 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 74 Issue 9 Pages 3085 - 7pp  
  Keywords  
  Abstract Next-to-leading order QCD corrections to the QCD-induced pp -> l(+)l(-)gamma j j + X and pp -> <(nu)lover bar>(l)nu(l)gamma(jj) + X processes are presented. The latter is used to find an optimal cut to reduce the contribution of radiative photon emission off the charged leptons in the first channel. As expected, the scale uncertainties are significantly reduced at NLO and the QCD corrections are phase-space dependent and important for precise measurements at the LHC.  
  Address [Campanario, Francisco] Univ Valencia, CSIC, IFIC, Div Theory, Valencia 46980, Spain, Email: francisco.campanario@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000350143900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2123  
Permanent link to this record
 

 
Author Campanario, F.; Kerner, M.; Zeppenfeld, D. url  doi
openurl 
  Title Z gamma production in vector-boson scattering at next-to-leading order QCD Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 160 - 19pp  
  Keywords NLO Computations; Phenomenological Models  
  Abstract Cross sections and differential distributions for Z gamma production in association with two jets via vector boson fusion are presented at next-to-leading order in QCD. The leptonic decays of the Z boson with full off-shell effects and spin correlations are taken into account. The uncertainties due to different scale choices and pdf sets are studied. Furthermore, we analyze the effect of including anomalous quartic gauge couplings at NLO QCD.  
  Address [Campanario, Francisco] Univ Valencia, CSIC, IFIC, Theory Div, E-46980 Valencia, Spain, Email: francisco.campanario@ific.uv.es;  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000423794800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3469  
Permanent link to this record
 

 
Author Baglio, J.; Campanario, F.; Glaus, S.; Muhlleitner, M.; Spira, M.; Streicher, J. url  doi
openurl 
  Title Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 6 Pages 459 - 9pp  
  Keywords  
  Abstract We present the calculation of the full next-to-leading order (NLO) QCD corrections to Higgs boson pair production via gluon fusion at the LHC, including the exact top-mass dependence in the two-loop virtual and one-loop real corrections. This is the first independent cross-check of the NLO QCD corrections presented in the literature before. Our calculation relies on numerical integrations of Feynman integrals, stabilised with integration-by-parts and a Richardson extrapolation to the narrow width approximation. We present results for the total cross section as well as for the invariant Higgs-pair-mass distribution at the LHC, including for the first time a study of the uncertainty due to the scheme and scale choice for the top mass in the loops.  
  Address [Baglio, J.; Streicher, J.] Eberhard Karls Univ Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany, Email: julien.baglio@uni-tuebingen.de;  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000469782000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4037  
Permanent link to this record
 

 
Author Baglio, J.; Campanario, F.; Glaus, S.; Muhlleitner, M.; Ronca, J.; Spira, M.; Streicher, J. url  doi
openurl 
  Title Higgs-pair production via gluon fusion at hadron colliders: NLO QCD corrections Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 181-50pp  
  Keywords Higgs Physics; Perturbative QCD  
  Abstract Higgs-pair production via gluon fusion is the dominant production mechanism of Higgs-boson pairs at hadron colliders. In this work, we present details of our numerical determination of the full next-to-leading-order (NLO) QCD corrections to the leading top-quark loops. Since gluon fusion is a loop-induced process at leading order, the NLO calculation requires the calculation of massive two-loop diagrams with up to four different mass/energy scales involved. With the current methods, this can only be done numerically, if no approximations are used. We discuss the setup and details of our numerical integration. This will be followed by a phenomenological analysis of the NLO corrections and their impact on the total cross section and the invariant Higgs-pair mass distribution. The last part of our work will be devoted to the determination of the residual theoretical uncertainties with special emphasis on the uncertainties originating from the scheme and scale dependence of the (virtual) top mass. The impact of the trilinear Higgs-coupling variation on the total cross section will be discussed.  
  Address [Baglio, Julien] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: julien.baglio@cern.ch;  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000531394200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4391  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva