Kalliokoski, M., Levi, G., Maulik, A., Ostrovskiy, I., Patrizii, L., Pinfold, J., et al. (2025). Calibration of Solid State Nuclear Track Detectors for rare event searches. J. Instrum., 20(3), P03014–12pp.
Abstract: The calibration of the CR39 (R) and Makrofol (R) Nuclear Track Detectors of the MoEDAL experiment at the CERN-LHC was performed by exposing stacks of detector foils to heavy ion beams with energies ranging from 340 MeV/nucleon to 150 GeV/nucleon. After chemical etching, the base areas and lengths of etch-pit cones were measured using automatic and manual optical microscopes. The response of the detectors as measured by the ratio of the track-etching rate over the bulk-etching rate, was determined over a range extending from their threshold at Z/beta 7 and 50 for CR39 and Makrofol, respectively, up to Z/beta 92.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2025). Configuration, Performance, and Commissioning of the ATLAS b-jet Triggers for the 2022 and 2023 LHC data-taking periods. J. Instrum., 20(3), 002–45pp.
Abstract: In 2022 and 2023, the Large Hadron Collider produced approximately two billion hadronic interactions each second from bunches of protons that collide at a rate of 40 MHz. The ATLAS trigger system is used to reduce this rate to a few kHz for recording. Selections based on hadronic jets, their energy, and event topology reduce the rate to O(10) kHz while maintaining high efficiencies for important signatures resulting in b-quarks, but to reach the desired recording rate of hundreds of Hz, additional real-time selections based on the identification of jets containing b-hadrons (b-jets) are employed to achieve low thresholds on the jet transverse momentum at the High-Level Trigger. The configuration, commissioning, and performance of the real-time ATLAS b-jet identification algorithms for the early LHC Run 3 collision data are presented. These recent developments provide substantial gains in signal efficiency for critical signatures; for the Standard Model production of Higgs boson pairs, a 50% improvement in selection efficiency is observed in final states with four b-quarks or two b -quarks and two hadronically decaying.. -leptons.
|
Mengoni, D., Duenas, J. A., Assie, M., Boiano, C., John, P. R., Aliaga, R. J., et al. (2014). Digital pulse-shape analysis with a TRACE early silicon prototype. Nucl. Instrum. Methods Phys. Res. A, 764, 241–246.
Abstract: A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 tun thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.
|
Brook, N. H., Castillo Garcia, L., Conneely, T. M., Cussans, D., van Dijk, M. W. U., Fohl, K., et al. (2018). Testbeam studies of a TORCH prototype detector. Nucl. Instrum. Methods Phys. Res. A, 908, 256–268.
Abstract: TORCH is a novel time-of-flight detector that has been developed to provide charged-particle identification between 2 and 10 GeV/c momentum. TORCH combines arrival times from multiple Cherenkov photons produced within a 10 mm-thick quartz radiator plate, to achieve a 15 ps time-of-flight resolution per incident particle. A customised Micro-Channel Plate photomultiplier tube (MCP-PMT) and associated readout system utilises an innovative charge-sharing technique between adjacent pixels to obtain the necessary 70 ps time resolution of each Cherenkov photon. A five-year R&D programme has been undertaken, culminating in the construction of a small-scale prototype TORCH module. In testbeams at CERN, this prototype operated successfully with customised electronics and readout system. A full analysis chain has been developed to reconstruct the data and to calibrate the detector. Results are compared to those using a commercial Planacon MCP-PMT, and single photon resolutions approaching 80 ps have been achieved. The photon counting efficiency was found to be in reasonable agreement with a GEANT4 Monte Carlo simulation of the detector. The small-scale demonstrator is a precursor to a full-scale TORCH module (with a radiator plate of 660 x 1250 x 10 mm(3)), which is currently under construction.
|