|   | 
Details
   web
Records
Author Kasieczka, G. et al; Sanz, V.
Title The LHC Olympics 2020: a community challenge for anomaly detection in high energy physics Type Journal Article
Year 2021 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.
Volume 84 Issue 12 Pages 124201 - 64pp
Keywords anomaly detection; machine learning; unsupervised learning; weakly supervised learning; semisupervised learning; beyond the standard model; model-agnostic methods
Abstract A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). Methods made use of modern machine learning tools and were based on unsupervised learning (autoencoders, generative adversarial networks, normalizing flows), weakly supervised learning, and semi-supervised learning. This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders.
Address [Kasieczka, Gregor] Univ Hamburg, Inst Expt Phys, Hamburg, Germany, Email: gregor.kasieczka@uni-hamburg.de;
Corporate Author Thesis
Publisher (down) IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4885 ISBN Medium
Area Expedition Conference
Notes WOS:000727698500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5039
Permanent link to this record
 

 
Author Abdullahi, A.M. et al; Lopez-Pavon, J.
Title The present and future status of heavy neutral leptons Type Journal Article
Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue 2 Pages 020501 - 100pp
Keywords Neutrinos; beyond the standard model; sterile neutrinos
Abstract The existence of nonzero neutrino masses points to the likely existence of multiple Standard Model neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as heavy neutral leptons (HNLs). In this white paper, we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological impacts. We discuss the importance of continuing to search for HNLs, and its potential impact on our understanding of key fundamental questions, and additionally we outline the future prospects for next-generation future experiments or upcoming accelerator run scenarios.
Address [Abdullahi, Asli M.; Plestid, Ryan] Fermilab Natl Accelerator Lab, Theoret Phys Dept, POB 500, Batavia, IL 60510 USA, Email: shoemaker@vt.edu
Corporate Author Thesis
Publisher (down) IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000918351600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5486
Permanent link to this record
 

 
Author Cai, Y.; Herrero-Garcia, J.; Schmidt, M.A.; Vicente, A.; Volkas, R.R.
Title From the Trees to the Forest: A Review of Radiative Neutrino Mass Models Type Journal Article
Year 2017 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 5 Issue Pages 63 - 56pp
Keywords neutrino masses; lepton flavor violation; lepton number violation; beyond the standard model; effective field theory; model building; LHC; dark matter
Abstract A plausible explanation for the lightness of neutrino masses is that neutrinos are massless at tree level, with their mass (typically Majorana) being generated radiatively at one or more loops. The new couplings, together with the suppression coming from the loop factors, imply that the new degrees of freedom cannot be too heavy (they are typically at the TeV scale). Therefore, in these models there are no large mass hierarchies and they can be tested using different searches, making their detailed phenomenological study very appealing. In particular, the new particles can be searched for at colliders and generically induce signals in lepton-flavor and lepton-number violating processes (in the case of Majorana neutrinos), which are not independent from reproducing correctly the neutrino masses and mixings. The main focus of the review is on Majorana neutrinos. We order the allowed theory space from three different perspectives: (i) using an effective operator approach to lepton number violation, (ii) by the number of loops at which the Weinberg operator is generated, (iii) within a given loop order, by the possible irreducible topologies. We also discuss in more detail some popular radiative models which involve qualitatively different features, revisiting their most important phenomenological implications. Finally, we list some promising avenues to pursue.
Address [Cai, Yi] Sun Yat Sen Univ, Sch Phys, Guangzhou, Guangdong, Peoples R China, Email: juan.herrero-garcia@coepp.org.au;
Corporate Author Thesis
Publisher (down) Frontiers Research Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000416908800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3393
Permanent link to this record
 

 
Author Vicente, A.
Title Higgs Lepton Flavor Violating Decays in Two Higgs Doublet Models Type Journal Article
Year 2019 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 7 Issue Pages 174 - 13pp
Keywords Higgs boson; lepton flavor violating decays; beyond the standard model; two Higgs doublet models; effective field theory
Abstract The discovery of a non-zero rate for a lepton flavor violating decay mode of the Higgs boson would definitely be an indication of New Physics. We review the prospects for such signal in Two Higgs Doublet Models, in particular for Higgs boson decays into tau μfinal states. We will show that this scenario contains all the necessary ingredients to provide large flavor violating rates and still be compatible with the stringent limits from direct searches and low-energy flavor experiments.
Address [Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: avelino.vicente@ific.uv.es
Corporate Author Thesis
Publisher (down) Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000498568200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4206
Permanent link to this record
 

 
Author Cirigliano, V.; Jenkins, J.P.; Gonzalez-Alonso, M.
Title Semileptonic decays of light quarks beyond the Standard Model Type Journal Article
Year 2010 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 830 Issue 1-2 Pages 95-115
Keywords Semileptonic decays; CKM unitarity; Effective theory; Beyond the Standard Model
Abstract We describe non-standard contributions to semileptonic processes in a model independent way in terms of in SU(2)(L) x U(1)(Y) invariant effective lagrangian at the weak scale, front which we derive the low-energy effective lagrangian governing muon and beta decays. We find that the deviation from Cabibbo universality, Delta(CKM) equivalent to vertical bar V-ud vertical bar(2) + vertical bar V-us vertical bar(2) + vertical bar V-ub vertical bar(2) – 1, receives contributions from four effective operators. The phenomenological bound Delta(CKM) = (-1 +/- 6) x 10(-4) provides strong constraints on all four operators, corresponding to art effective scale Lambda > 11 TeV (90% CL). Depending on the operator, this constraint is at the same level or better then the Z pole observables. Conversely, precision electroweak constraints alone would allow universality violations as large as Delta(CKM) = -0.01 (90% CL). An observed Delta(CKM) not equal 0 at this level Could be explained in terms of a single four-fermion operator which is relatively poorly constrained by electroweak precision measurements.
Address [Cirigliano, Vincenzo; Jenkins, James P.; Gonzalez-Alonso, Martin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA, Email: cirigliano@lanl.gov
Corporate Author Thesis
Publisher (down) Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes ISI:000275150000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 497
Permanent link to this record