toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gonzalez-Iglesias, D.; Gimeno, B.; Esperante, D.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster-Martinez, N.; Blanch, C.; Martinez, E.; Menendez, A.; Fuster, J.; Grudiev, A. url  doi
openurl 
  Title Non-resonant ultra-fast multipactor regime in dielectric-assist accelerating structures Type Journal Article
  Year 2024 Publication Results in Physics Abbreviated Journal Results Phys.  
  Volume 56 Issue Pages 107245 - 12pp  
  Keywords Multipactor; Dielectric accelerating structures; RF particle accelerators; Plasma discharge  
  Abstract The objective of this work is the evaluation of the risk of suffering a multipactor discharge in an S-band dielectric-assist accelerating (DAA) structure for a compact low-energy linear particle accelerator dedicated to hadrontherapy treatments. A DAA structure consists of ultra-low loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure, with the advantage of having an extremely high quality factor and very high shunt impedance at room temperature, and it is therefore proposed as a potential alternative to conventional disk-loaded copper structures. However, it has been observed that these structures suffer from multipactor discharges. In fact, multipactor is one of the main problems of these devices, as it limits the maximum accelerating gradient. Because of this, the analysis of multipactor risk in the early design steps of DAA cavities is crucial to ensure the correct performance of the device after fabrication. In this paper, we present a comprehensive and detailed study of multipactor in our DAA design through numerical simulations performed with an in-house developed code based on the Monte-Carlo method. The phenomenology of the multipactor (resonant electron trajectories, electron flight time between impacts, etc.) is described in detail for different values of the accelerating gradient. It has been found that in these structures an ultra-fast non-resonant multipactor appears, which is different from the types of multipactor theoretically studied in the scientific literature. In addition, the effect of several low electron emission coatings on the multipactor threshold is investigated. Furthermore, a novel design based on the modification of the DAA cell geometry for multipactor mitigation is introduced, which shows a significant increase in the accelerating gradient handling capabilities of our prototype.  
  Address [Gonzalez-Iglesias, Daniel; Gimeno, Benito; Esperante, Daniel; Martinez-Reviriego, Pablo; Martin-Luna, Pablo; Fuster-Martinez, Nuria; Blanch, Cesar; Martinez, Eduardo; Menendez, Abraham; Fuster, Juan] CSIC UV, Inst Fis Corpuscular IF, c Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es  
  Corporate Author Thesis  
  Publisher (up) Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3797 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001133850600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5866  
Permanent link to this record
 

 
Author Amaldi, U.; Bonomi, R.; Braccini, S.; Crescenti, M.; Degiovanni, A.; Garlasche, M.; Garonna, A.; Magrin, G.; Mellace, C.; Pearce, P.; Pitta, G.; Puggioni, P.; Rosso, E.; Verdu-Andres, S.; Wegner, R.; Weiss, M.; Zennaro, R. doi  openurl
  Title Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs Type Journal Article
  Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 620 Issue 2-3 Pages 563-577  
  Keywords Medical accelerators; Linac; Cyclotron; Synchrotron; Cyclinac; Radiation oncology; Hadrontherapy; Particle therapy; Proton therapy; Carbon ion therapy; Dose delivery  
  Abstract Hadrontherapy with protons and carbon ions is a fast developing methodology in radiation oncology. The accelerators used and planned for this purpose are reviewed starting from the cyclotrons used in the thirties. As discussed in the first part of this paper, normal and superconducting cyclotrons are still employed, together with synchrotrons, for proton therapy while for carbon ion therapy synchrotrons have been till now the only option. The latest developments concern a superconducting cyclotron for carbon ion therapy, fast-cycling high frequency linacs and 'single room' proton therapy facilities. These issues are discussed in the second part of the paper by underlining the present challenges, in particular the treatment of moving organs.  
  Address [Amaldi, U.; Bonomi, R.; Braccini, S.; Crescenti, M.; Degiovanni, A.; Garlasche, M.; Garonna, A.; Magrin, G.; Mellace, C.; Pearce, P.; Pitta, G.; Puggioni, P.; Rosso, E.; Andres, S. Verdu; Wegner, R.; Weiss, M.; Zennaro, R.] TERA Fdn, Novara, Italy, Email: Saverio.Braccini@cern.ch  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280601700058 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 401  
Permanent link to this record
 

 
Author Degiovanni, A.; Amaldi, U.; Bonomi, R.; Garlasche, M.; Garonna, A.; Verdu-Andres, S.; Wegner, R. doi  openurl
  Title TERA high gradient test program of RF cavities for medical linear accelerators Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 657 Issue 1 Pages 55-58  
  Keywords Medical accelerators; Hadrontherapy; Cyclinac; Linac; RF cavity; Breakdown Rate  
  Abstract The scientific community and the medical industries are putting a considerable effort into the design of compact, reliable and cheap accelerators for hadrontherapy. Up to now only circular accelerators are used to deliver beams with energies suitable for the treatment of deep seated tumors. The TERA Foundation has proposed and designed a hadrontherapy facility based on the cyclinac concept: a high gradient linear accelerator placed downstream of a cyclotron used as an injector. The overall length of the linac, and therefore its final cost, is almost inversely proportional to the average accelerating gradient achieved in the linac. TERA, in collaboration with the CLIC RF group, has started a high gradient test program. The main goal is to study the high gradient behavior of prototype cavities and to determine the appropriate linac operating frequency considering important issues such as machine reliability and availability of distributed power sources. A preliminary test of a 3 GHz cavity has been carried out at the beginning of 2010, giving encouraging results. Further investigations are planned before the end of 2011. A set of 5.7 GHz cavities is under production and will be tested in a near future. The construction and test of a multi-cell structure is also foreseen.  
  Address [Degiovanni, A; Wegner, R] CERN, CH-1211 Geneva, Switzerland, Email: alberto.degiovanni@cern.ch  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000297085800010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 807  
Permanent link to this record
 

 
Author Marco-Hernandez, R.; Bau, M.; Ferrari, M.; Ferrari, V.; Pedersen, F.; Soby, L. doi  openurl
  Title A Low-Noise Charge Amplifier for the ELENA Trajectory, Orbit, and Intensity Measurement System Type Journal Article
  Year 2017 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 64 Issue 9 Pages 2465-2473  
  Keywords Beam position monitor (BPM); charge sensitive amplifier; instrumentation for accelerators; low-noise amplifier; particle accelerators; printed circuits  
  Abstract A low-noise head amplifier has been developed for the extra low energy antiproton ring beam trajectory, orbit, and intensity measurement system at CERN. This system is based on 24 double-electrode electrostatic beam position monitors installed around the ring. A head amplifier is placed close to each beam position monitor to amplify the electrode signals and generate a difference and a sum signal. These signals are sent to the digital acquisition system, about 50 m away from the ring, where they are digitized and further processed. The beam position can be measured by dividing the difference signal by the sum signal while the sum signal gives information relative to the beam intensity. The head amplifier consists of two discrete charge preamplifiers with junction field effect transistor (JFET) inputs, a sum and a difference stage, and two cable drivers. Special attention has been paid to the amplifier printed circuit board design to minimize the parasitic capacitances and inductances at the charge amplifier stages to meet the gain and noise requirements. The measurements carried out on the head amplifier showed a gain of 40.5 and 46.5 dB for the sum and difference outputs with a bandwidth from 200 Hz to 75 MHz and an input voltage noise density lower than 400 pV/v Hz. Twenty head amplifiers have been already installed in the ring and they have been used to detect the first beam signals during the first commissioning stage in November 2016.  
  Address [Marco-Hernandez, Ricardo; Pedersen, Flemming; Soby, Lars] CERN, CH-1217 Meyrin, Switzerland, Email: rmarco@ific.uv.es  
  Corporate Author Thesis  
  Publisher (up) Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000411029500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3298  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Precision luminosity measurements at LHCb Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages P12005 - 91pp  
  Keywords Pattern recognition, cluster finding, calibration and fitting methods; Instrumentation for particle accelerators and storage rings – high energy (linear accelerators, synchrotrons)  
  Abstract Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy root s. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for root s = 2.76, 7 and 8TeV (proton-proton collisions) and for root s(NN) = 5TeV (proton-lead collisions). Both the “van der Meer scan” and “beam-gas imaging” luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at root s = 8TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider.  
  Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomes, A.; Hicheur, A.; Massafferri, A.; dos Reis, A. C.; Rodrigues, A. B.] CBPF, Rio De Janeiro, Brazil, Email: rosen.matev@cern.ch  
  Corporate Author Thesis  
  Publisher (up) Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000345859200021 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2030  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva