|   | 
Details
   web
Records
Author Park, B.Y.; Paeng, W.G.; Vento, V.
Title The inhomogeneous phase of dense skyrmion matter Type Journal Article
Year 2019 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 989 Issue Pages 231-245
Keywords Skyrmion; Dense matter; Phase transition
Abstract It was predicted qualitatively in ref. [I] that skyrmion matter at low density is stable in an inhomogeneous phase where skyrmions condensate into lumps while the remaining space is mostly empty. The aim of this paper is to proof quantitatively this prediction. In order to construct an inhomogeneous medium we distort the original FCC crystal to produce a phase of planar structures made of skyrmions. We implement mathematically these planar structures by means of the 't Hooft instanton solution using the Atiyah-Manton ansatz. The results of our calculation of the average density and energy confirm the prediction suggesting that the phase diagram of the dense skyrmion matter is a lot more complex than a simple phase transition from the skyrmion FCC crystal lattice to the half-skyrmion CC one. Our results show that skyrmion matter shares common properties with standard nuclear matter developing a skin and leading to a binding energy equation which resembles the Weiszacker mass formula.
Address [Park, Byung-Yoon] Chungnam Natl Univ, Dept Phys, Daejon 305764, South Korea, Email: bypark@cnu.ac.kr;
Corporate Author Thesis
Publisher (up) Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes WOS:000478705300016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4098
Permanent link to this record
 

 
Author Kulikov, I.; Algora, A.; Atanasov, D.; Ascher, P.; Blaum, K.; Cakirli, R.B.; Herlert, A.; Huang, W.J.; Karthein, J.; Litvinov, Y.A.; Lunney, D.; Manea, V.; Mougeot, M.; Schweikhard, L.; Welker, A.; Wienholtz, F.
Title Masses of short-lived Sc-49, Sc-50, As-70, Br-73 and stable Hg-196 nuclides Type Journal Article
Year 2020 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 1002 Issue Pages 121990 - 15pp
Keywords ISOLTRAP; Mass measurements; Atomic mass evaluation; Multi-reflection time-of-flight; Penning trap mass spectrometry
Abstract Mass measurements of Sc-49,Sc-50, As-70, Br-73 and Hg-196 nuclides produced at CERN's radioactive-ion beam facility ISOLDE are presented. The measurements were performed at the ISOLTRAP mass spectrometer by use of the multi-reflection time-of-flight and the Penning-trap mass spectrometry techniques. The new results agree well with previously known literature values. The mass accuracy for all cases has been improved.
Address [Kulikov, I; Litvinov, Yu A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany, Email: ivan.kulikov@cern.ch
Corporate Author Thesis
Publisher (up) Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes WOS:000567817300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4528
Permanent link to this record
 

 
Author Sajjad Athar, M.; Ruiz Simo, I.; Vicente Vacas, M.J.
Title Nuclear medium modification of the F2(x, Q^2) structure function Type Journal Article
Year 2011 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 857 Issue 1 Pages 29-41
Keywords Structure function; Nuclear medium effects; Deep inelastic scattering; Local density approximation
Abstract We study the nuclear effects in the electromagnetic structure function F-2(x, Q(2)) in the deep inelastic lepton nucleus scattering process by taking into account Fermi motion, binding, pion and rho meson cloud contributions. Calculations have been done in a local density approximation using relativistic nuclear spectral functions which include nucleon correlations. The ratios R-F2(A) (x, Q(2)) = 2F(2)(A)(x, Q(2))/AF(2)(D)(x, Q(2)) are obtained and compared with recent JLab results for light nuclei with special attention to the slope of the x distributions. This magnitude shows a non-trivial A dependence and it is insensitive to possible normalization uncertainties. The results have also been compared with some of the older experiments using intermediate mass nuclei.
Address [Athar, M. Sajjad] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India, Email: sajathar@gmail.com
Corporate Author Thesis
Publisher (up) Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes ISI:000290607500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 627
Permanent link to this record
 

 
Author NEMO-3 Collaboration (Argyriades, J. et al); Martin-Albo, J.; Novella, P.
Title Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector Type Journal Article
Year 2010 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 847 Issue 3-4 Pages 168-179
Keywords RADIOACTIVITY Zr-96(2 beta); measured E-beta,E- E-gamma, beta beta-, beta gamma-coin; deduced T-1/2 for 2 nu beta beta-decay, NEMO-3 detector
Abstract Using 9.4 g of Zr-96 isotope and 1221 days of data from the NEMO-3 detector corresponding (0 0.031 kg y, the obtained 2 nu beta beta decay half-life measurement is T-1/2(2 nu) = [2.35 +/- 0.14(stat) +/- 0.16(syst)] x 10(19) yr. Different characteristics of the final state electrons have been studied, such as the energy sum, individual electron energy, and angular distribution. The 2v nuclear matrix element is extracted using the measured 2 nu beta beta half-life and is M-2 nu = 0.049 +/- 0.002. Constraints on 0 nu beta beta decay have also been set.
Address [Basharina-Freshville, A.; Chapon, A.; Daraktchieva, Z.; Flack, R.; Kauer, M.; King, S.; Saakyan, R.; Thomas, J.; Vasiliev, V.] UCL, London WC1E 6BT, England, Email: kauer@hep.ucl.ac.uk
Corporate Author Thesis
Publisher (up) Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes ISI:000283955700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 337
Permanent link to this record
 

 
Author Bayar, M.; Oset, E.
Title Improved fixed center approximation of the Faddeev equations for the (K)over-bar N N system with S=0 Type Journal Article
Year 2012 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 883 Issue Pages 57-68
Keywords Fixed center approximation; (K)over-bar N N system
Abstract We extend the Fixed Center Approximation (FCA) to the Faddeev equations for the (K) over bar N N system with S = 0, including the charge exchange mechanisms in the (K) over bar rescattering which have been ignored in former works within the FCA. We obtain similar results to those found before, but the binding is reduced by 6 MeV. At the same time we also evaluate the explicit contribution the pi N Sigma intermediate state in the three body system and find that it produces and additional small decrease in the binding of about 3 MeV. The system appears bound by about 35 MeV and the width omitting two body absorption, is about 50 MeV.
Address [Bayar, M.; Oset, E.] Inst Invest Paterna, Inst Fis Corpuscular, Ctr Mixto, CSIC,UV, Valencia 46071, Spain, Email: melahat@ific.uv.es
Corporate Author Thesis
Publisher (up) Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes WOS:000304628900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1042
Permanent link to this record