|   | 
Details
   web
Records
Author Mengoni, D.; Duenas, J.A.; Assie, M.; Boiano, C.; John, P.R.; Aliaga, R.J.; Beaumel, D.; Capra, S.; Gadea, A.; Gonzales, V.; Gottardo, A.; Grassi, L.; Herrero-Bosch, V.; Houdy, T.; Martel, I.; Parkar, V.V.; Perez-Vidal, R.M.; Pullia, A.; Sanchis, E.; Triossi, A.; Valiente-Dobon, J.J.
Title Digital pulse-shape analysis with a TRACE early silicon prototype Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 764 Issue Pages 241-246
Keywords Silicon detector; Light-charged particles; Digital pulse shape analysis; Particle identification; Gamma-ray spectroscopy
Abstract A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 tun thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.
Address [Mengoni, D.; John, P. R.; Grassi, L.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy
Corporate Author Thesis
Publisher (up) Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000341987000030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1929
Permanent link to this record
 

 
Author Brook, N.H.; Castillo Garcia, L.; Conneely, T.M.; Cussans, D.; van Dijk, M.W.U.; Fohl, K.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Hancock, T.H.; Harnew, N.; Lapington, J.; Milnes, J.; Piedigrossi, D.; Rademacker, J.; Ros Garcia, A.
Title Testbeam studies of a TORCH prototype detector Type Journal Article
Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 908 Issue Pages 256-268
Keywords Cherenkov radiation; Particle identification; TORCH; MCP-PMT
Abstract TORCH is a novel time-of-flight detector that has been developed to provide charged-particle identification between 2 and 10 GeV/c momentum. TORCH combines arrival times from multiple Cherenkov photons produced within a 10 mm-thick quartz radiator plate, to achieve a 15 ps time-of-flight resolution per incident particle. A customised Micro-Channel Plate photomultiplier tube (MCP-PMT) and associated readout system utilises an innovative charge-sharing technique between adjacent pixels to obtain the necessary 70 ps time resolution of each Cherenkov photon. A five-year R&D programme has been undertaken, culminating in the construction of a small-scale prototype TORCH module. In testbeams at CERN, this prototype operated successfully with customised electronics and readout system. A full analysis chain has been developed to reconstruct the data and to calibrate the detector. Results are compared to those using a commercial Planacon MCP-PMT, and single photon resolutions approaching 80 ps have been achieved. The photon counting efficiency was found to be in reasonable agreement with a GEANT4 Monte Carlo simulation of the detector. The small-scale demonstrator is a precursor to a full-scale TORCH module (with a radiator plate of 660 x 1250 x 10 mm(3)), which is currently under construction.
Address [Brook, N. H.; Cussans, D.; Garcia, A. Ros] Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England, Email: mvandijk@cern.ch
Corporate Author Thesis
Publisher (up) Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000446864600033 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3760
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Qin, G.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title Monitoring and data quality assessment of the ATLAS liquid argon calorimeter Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 9 Issue Pages P07024 - 55pp
Keywords Particle identification methods; Calorimeters; Large detector systems for particle and astroparticle physics
Abstract The liquid argon calorimeter is a key component of the ATLAS detector installed at the CERN Large Hadron Collider. The primary purpose of this calorimeter is the measurement of electron and photon kinematic properties. It also provides a crucial input for measuring jets and missing transverse momentum. An advanced data monitoring procedure was designed to quickly identify issues that would affect detector performance and ensure that only the best quality data are used for physics analysis. This article presents the validation procedure developed during the 2011 and 2012 LHC data-taking periods, in which more than 98% of the proton-proton luminosity recorded by ATLAS at a centre-of-mass energy of 7-8 TeV had calorimeter data quality suitable for physics analysis.
Address [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000340050700045 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1915
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C.
Title A new algorithm for identifying the flavour of B-s(0) mesons at LHCb Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 11 Issue Pages P05010 - 23pp
Keywords Analysis and statistical methods; Particle identification methods; Pattern recognition; cluster finding; calibration and fitting methods
Abstract A new algorithm for the determination of the initial flavour of B-s(0) mesons is presented. The algorithm is based on two neural networks and exploits the b hadron production mechanism at a hadron collider. The first network is trained to select charged kaons produced in association with the B-s(0) meson. The second network combines the kaon charges to assign the B-s(0) flavour and estimates the probability of a wrong assignment. The algorithm is calibrated using data corresponding to an integrated luminosity of 3 fb(-1) collected by the LHCb experiment in proton-proton collisions at 7 and 8 TeV centre-of-mass energies. The calibration is performed in two ways: by resolving the B-s(0)-B-s(0) flavour oscillations in B-s(0) -> D-s(-)pi(+) decays, and by analysing flavour-specific B-s2*(5840)(0) -> B+K- decays. The tagging power measured in B-s(0) -> D-s(-)pi(+) decays is found to be (1.80 +/- 0.19 ( stat) +/- 0.18 (syst))%, which is an improvement of about 50% compared to a similar algorithm previously used in the LHCb experiment.
Address [Bediaga, I.; De Miranda, J. M.; Rodrigues, F. Ferreira; Gomes, A.; Massafferri, A.; Rodrigues, B. Osorio; dos Reis, A. C.; Rodrigues, A. B.] CBPF, Rio De Janeiro, Brazil, Email: mirco.dorigo@cern.ch
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000377851700033 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2731
Permanent link to this record
 

 
Author Double Chooz collaboration (Abrahao, T. et al); Novella, P.
Title Novel event classification based on spectral analysis of scintillation waveforms in Double Chooz Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages P01031 - 26pp
Keywords Digital signal processing (DSP); Particle identification methods; Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Neutrino detectors
Abstract Liquid scintillators are a common choice for neutrino physics experiments, but their capabilities to perform background rejection by scintillation pulse shape discrimination is generally limited in large detectors. This paper describes a novel approach for a pulse shape based event classification developed in the context of the Double Chooz reactor antineutrino experiment. Unlike previous implementations, this method uses the Fourier power spectra of the scintillation pulse shapes to obtain event-wise information. A classification variable built from spectral information was able to achieve an unprecedented performance, despite the lack of optimization at the detector design level. Several examples of event classification are provided, ranging from differentiation between the detector volumes and an efficient rejection of instrumental light noise, to some sensitivity to the particle type, such as stopping muons, ortho-positronium formation, alpha particles as well as electrons and positrons. In combination with other techniques the method is expected to allow for a versatile and more efficient background rejection in the future, especially if detector optimization is taken into account at the design level.
Address [Abrahao, T.; dos Anjos, J. C.; Lima, H.; Pepe, I.; Wagner, S.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil, Email: stefan.wagner@apc.in2p3.fr
Corporate Author Thesis
Publisher (up) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000423783800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3466
Permanent link to this record