|   | 
Details
   web
Records
Author Bordes, J.; Chan, H.M.; Tsou, S.T.
Title A vacuum transition in the FSM with a possible new take on the horizon problem in cosmology Type Journal Article
Year 2023 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 38 Issue 25 Pages 2350124 - 32pp
Keywords Framed standard model; phase transition; early Universe; cosmology
Abstract The framed standard model (FSM), constructed to explain the empirical mass and mixing patterns (including CP phases) of quarks and leptons, in which it has done quite well, gives otherwise the same result as the standard model (SM) in almost all areas in particle physics where the SM has been successfully applied, except for a few specified deviations such as the W mass and the g-2 of muons, that is, just where experiment is showing departures from what SM predicts. It predicts further the existence of a hidden sector of particles some of which may function as dark matter. In this paper, we first note that the above results involve, surprisingly, the FSM undergoing a vacuum transition (VTR1) at a scale of around 17MeV, where the vacuum expectation values of the colour framons (framed vectors promoted into fields) which are all nonzero above that scale acquire some vanishing components below it. This implies that the metric pertaining to these vanishing components would vanish also. Important consequences should then ensue, but these occur mostly in the unknown hidden sector where empirical confirmation is hard at present to come by, but they give small reflections in the standard sector, some of which may have already been seen. However, one notes that if, going off at a tangent, one imagines colour to be embedded, Kaluza-Klein (KK) fashion, into a higher-dimensional space-time, then this VTR1 would cause 2 of the compactified dimensions to collapse. This might mean then that when the universe cooled to the corresponding temperature of 1011 K when it was about 10-3 s old, this VTR1 collapse would cause the three spatial dimensions of the universe to expand to compensate. The resultant expansion is estimated, using FSM parameters previously determined from particle physics, to be capable, when extrapolated backwards in time, of bringing the present universe back inside the then horizon, solving thus formally the horizon problem. Besides, VTR1 being a global phenomenon in the FSM, it would switch on and off automatically and simultaneously over all space, thus requiring seemingly no additional strategy for a graceful exit. However, this scenario has not been checked for consistency with other properties of the universe and is to be taken thus not as a candidate solution of the horizon problem but only as an observation from particle physics which might be of interest to cosmologists and experts in the early universe. For particle physicists also, it might serve as an indicator for how relevant this VTR1 can be, even if the KK assumption is not made.
Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;
Corporate Author Thesis
Publisher (down) World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:001099552500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5803
Permanent link to this record
 

 
Author Norena, J.; Verde, L.; Jimenez, R.; Pena-Garay, C.; Gomez, C.
Title Cancelling out systematic uncertainties Type Journal Article
Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 419 Issue 2 Pages 1040-1050
Keywords methods: statistical; cosmology: theory
Abstract We present a method to minimize, or even cancel out, the nuisance parameters affecting a measurement. Our approach is general and can be applied to any experiment or observation where systematic errors are a concern e.g. are larger than statistical errors. We compare it with the Bayesian technique used to deal with nuisance parameters: marginalization, and show how the method compares and improves by avoiding biases. We illustrate the method with several examples taken from the astrophysics and cosmology world: baryonic acoustic oscillations (BAOs), cosmic clocks, Type Ia supernova (SNIa) luminosity distance, neutrino oscillations and dark matter detection. By applying the method we not only recover some known results but also find some interesting new ones. For BAO experiments we show how to combine radial and angular BAO measurements in order to completely eliminate the dependence on the sound horizon at radiation drag. In the case of exploiting SNIa as standard candles we show how the uncertainty in the luminosity distance by a second parameter modelled as a metallicity dependence can be eliminated or greatly reduced. When using cosmic clocks to measure the expansion rate of the universe, we demonstrate how a particular combination of observables nearly removes the metallicity dependence of the galaxy on determining differential ages, thus removing the agemetallicity degeneracy in stellar populations. We hope that these findings will be useful in future surveys to obtain robust constraints on the dark energy equation of state.
Address [Norena, Jorge; Verde, Licia; Jimenez, Raul] Univ Barcelona IEEC UB, ICREA, Barcelona 08028, Spain, Email: jorge.norena@icc.ub.edu
Corporate Author Thesis
Publisher (down) Wiley-Blackwell Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000298482300011 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 890
Permanent link to this record
 

 
Author Panotopoulos, G.
Title A dynamical dark energy model with a given luminosity distance Type Journal Article
Year 2011 Publication General Relativity and Gravitation Abbreviated Journal Gen. Relativ. Gravit.
Volume 43 Issue 11 Pages 3191-3199
Keywords Dark energy; Observational cosmology; Particle-theory
Abstract It is assumed that the current cosmic acceleration is driven by a scalar field, the Lagrangian of which is a function of the kinetic term only, and that the luminosity distance is a given function of the red-shift. Upon comparison with baryon acoustic oscillations and cosmic microwave background data the parameters of the models are determined, and then the time evolution of the scalar field is determined by the dynamics using the cosmological equations. We find that the solution is very different than the corresponding solution when the non-relativistic matter is ignored, and that the universe enters the acceleration era at larger red-shift compared to the standard I > CDM model.
Address [Panotopoulos, G] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Grigoris.Panotopoulos@uv.es
Corporate Author Thesis
Publisher (down) Springer/Plenum Publishers Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-7701 ISBN Medium
Area Expedition Conference
Notes WOS:000295982800015 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 782
Permanent link to this record
 

 
Author LISA Cosmology Working Group (Auclair, P. et al); Figueroa, D.G.
Title Cosmology with the Laser Interferometer Space Antenna Type Journal Article
Year 2023 Publication Living Reviews in Relativity Abbreviated Journal Living Rev. Relativ.
Volume 26 Issue 1 Pages 5 - 254pp
Keywords Laser Interferometer Space Antenna (LISA); Cosmology
Abstract The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational-wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational-wave observations by LISA to probe the universe.
Address [Auclair, Pierre; Caprini, Chiara; Mangiagli, Alberto; Papanikolaou, Theodoros; Pol, Alberto Roper; Steer, Daniele A.; Vennin, Vincent; Petiteau, Antoine] Univ Paris, CNRS, Lab Astroparticule & Cosmol, F-75013 Paris, France, Email: chairscoswg@gmail.com
Corporate Author Thesis
Publisher (down) Springer Int Publ Ag Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2367-3613 ISBN Medium
Area Expedition Conference
Notes WOS:001063967800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5755
Permanent link to this record
 

 
Author Barenboim, G.; Panotopoulos, G.
Title Gravitino dark matter in the constrained next-to-minimal supersymmetric standard model with neutralino next-to-lightest superpartner Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue Pages 011 - 20pp
Keywords Cosmology of Theories beyond the SM; Supersymmetric Standard Model
Abstract The viability of a possible cosmological scenario is investigated. The theoretical framework is the constrained next-to-minimal supersymmetric standard model (cNMSSM), with a gravitino playing the role of the lightest supersymmetric particle (LSP) and a neutralino acting as the next-to-lightest supersymmetric particle (NLSP). All the necessary constraints from colliders and cosmology have been taken into account. For gravitino we have considered the two usual production mechanisms, namely out-of equillibrium decay from the NLSP, and scattering processes from the thermal bath. The maximum allowed reheating temperature after inflation, as well as the maximum allowed gravitino mass are determined.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: gabriela.barenboim@uv.es
Corporate Author Thesis
Publisher (down) Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000282370900046 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 256
Permanent link to this record