|   | 
Details
   web
Records
Author Chachamis, G.; Deak, M.; Rodrigo, G.
Title Heavy quark impact factor in kT-factorization Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 066 - 16pp
Keywords
Abstract We present the calculation of the finite part of the heavy quark impact factor at next-to-leading logarithmic accuracy in a form suitable for phenomenological studies such as the calculation of the cross-section for single bottom quark production at the LHC within the kT-factorization scheme.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1766
Permanent link to this record
 

 
Author Fileviez Perez, P.; Iminniyaz, H.; Rodrigo, G.; Spinner, S.
Title Gauge mediated supersymmetry breaking via seesaw mechanisms Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 81 Issue 9 Pages 095013 - 12pp
Keywords
Abstract We present a simple scenario for gauge mediated supersymmetry breaking (GMSB) where the messengers are also the fields that generate neutrino masses. We show that the simplest such scenario corresponds to the case where neutrino masses are generated through the type I and type III seesaw mechanisms. The entire supersymmetric spectrum and Higgs masses are calculable from only four input parameters. Since the electroweak symmetry is broken through a doubly radiative mechanism, meaning a nearly zero B term at the messenger scale which runs down to acceptable values, one obtains quite a constrained spectrum for the supersymmetric particles whose properties we describe. We refer to this mechanism as "nu GMSB.''
Address [Perez, Pavel Fileviez; Spinner, Sogee] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000278145100073 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 440
Permanent link to this record
 

 
Author Campanario, F.; Czyz, H.; Gluza, J.; Jelinski, T.; Rodrigo, G.; Tracz, S.; Zhuridov, D.
Title Standard model radiative corrections in the pion form factor measurements do not explain the a(mu) anomaly Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 7 Pages 076004 - 5pp
Keywords
Abstract In this paper, we address the question of whether the almost four standard deviations difference between theory and experiment for the muon anomalous magnetic moment a(mu) can be explained as a higher-order Standard Model perturbation effect in the pion form factor measurements. This question has, until now, remained open, obscuring the source of discrepancies between the measurements. We calculate the last radiative corrections for the extraction of the pion form factor, which were believed to be potentially substantial enough to explain the data within the Standard Model. We find that the corrections are too small to diminish existing discrepancies in the determination of the pion form factor for different kinematical configurations of low-energy BABAR, BES-III and KLOE experiments. Consequently, they cannot noticeably change the previous predictions for a(mu) and decrease the deviations between theory and direct measurements. To solve the above issues, new data and better understanding of low-energy experimental setups are needed, especially as new direct a(mu) measurements at Fermilab and J-PARC will provide new insights and substantially shrink the experimental error.
Address [Campanario, Francisco; Rodrigo, German; Tracz, Szymon] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: henryk.czyz@us.edu.pl
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000489577800008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4168
Permanent link to this record
 

 
Author Aguilera-Verdugo, J.J.; Driencourt-Mangin, F.; Hernandez-Pinto, R.J.; Plenter, J.; Ramirez-Uribe, S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.; Tracz, S.
Title Open Loop Amplitudes and Causality to All Orders and Powers from the Loop-Tree Duality Type Journal Article
Year 2020 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 124 Issue 21 Pages 211602 - 6pp
Keywords
Abstract Multiloop scattering amplitudes describing the quantum fluctuations at high-energy scattering processes are the main bottleneck in perturbative quantum field theory. The loop-tree duality is a novel method aimed at overcoming this bottleneck by opening the loop amplitudes into trees and combining them at integrand level with the real-emission matrix elements. In this Letter, we generalize the loop-tree duality to all orders in the perturbative expansion by using the complex Lorentz-covariant prescription of the original one-loop formulation. We introduce a series of mutiloop topologies with arbitrary internal configurations and derive very compact and factorizable expressions of their open-to-trees representation in the loop-tree duality formalism. Furthermore, these expressions are entirely independent at integrand level of the initial assignments of momentum flows in the Feynman representation and remarkably free of noncausal singularities. These properties, that we conjecture to hold to other topologies at all orders, provide integrand representations of scattering amplitudes that exhibit manifest causal singular structures and better numerical stability than in other representations.
Address [Jesus Aguilera-Verdugo, J.; Driencourt-Mangin, Felix; Plenter, Judith; Ramirez-Uribe, Selomit; Renteria-Olivo, Andres E.; Rodrigo, German; Sborlini, German F. R.; Torres Bobadilla, William J.; Tracz, Szymon] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: jesus.aguilera@ific.uv.es;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000535862200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4404
Permanent link to this record
 

 
Author Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.
Title Interplay between the loop-tree duality and helicity amplitudes Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 1 Pages 016012 - 13pp
Keywords
Abstract The spinor-helicity formalism has proven to be very efficient in the calculation of scattering amplitudes in quantum field theory, while the loop-tree duality (LTD) representation of multiloop integrals exhibits appealing and interesting advantages with respect to other approaches. In view of the most recent developments in LTD, we exploit the synergies with the spinor-helicity formalism to analyze illustrative one- and two-loop scattering processes. We focus our discussion on the local UV renormalization of IR and UV finite helicity amplitudes and present a fully automated numerical implementation that provides efficient expressions, which are integrable directly in four space-time dimensions.
Address [Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G. F. R.; Torres Bobadilla, W. J.] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cientif, E-46980 Valencia, Spain, Email: felix.dm@ific.uv.es;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000748867800009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5100
Permanent link to this record