|   | 
Details
   web
Records
Author Mandal, S.; Srivastava, R.; Valle, J.W.F.
Title Consistency of the dynamical high-scale type-I seesaw mechanism Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 11 Pages 115030 - 15pp
Keywords
Abstract We analyze the consistency of electroweak breaking within the simplest high-scale SU(3)(c) circle times SU(2)(L) circle times U(1)(Y) type-I seesaw mechanism. We derive the full two-loop renormalization group equations of the relevant parameters, including the quartic Higgs self-coupling of the Standard Model. For the simplest case of bare “right-handed” neutrino mass terms we find that, with large Yukawa couplings, the Higgs quartic self-coupling becomes negative much below the seesaw scale, so that the model may be inconsistent even as an effective theory. We show, however, that the “dynamical” type-I high-scale seesaw with spontaneous lepton number violation has better stability properties.
Address [Mandal, Sanjoy; Valle, Jose W. F.] Univ Valencia, CSIC, AHEP Grp, Inst Fis Corpuscular, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: smandal@ific.uv.es;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000541704500012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4440
Permanent link to this record
 

 
Author Das, A.; Mandal, S.; Modak, T.
Title Testing triplet fermions at the electron-positron and electron-proton colliders using fat jet signatures Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 3 Pages 033001 - 22pp
Keywords
Abstract The addition of SU(2)(L) triplet fermions of zero hypercharge with the Standard Model (SM) helps to explain the origin of the neutrino mass by the so-called seesaw mechanism. Such a scenario is commonly known as the type-III seesaw model. After the electroweak symmetry breaking, the mixings between the light and heavy mass eigenstates of the neutral leptons are developed and play important roles in the study of the charged and neutral multiplets of the triplet fermions at the colliders. In this article, we study such interactions to produce these multiplets of the triplet fermion at the electron-positron and electron-proton colliders at different center-of-mass energies. We focus on the heavy triplets, for example, having mass in the TeV scale so that their decay products including the SM, the gauge bosons, or the Higgs boson can be sufficiently boosted, leading to a fat jet. Hence, we probe the mixing between light-heavy mass eigenstates of the neutrinos and compare the results with the bounds obtained by the electroweak precision study.
Address [Das, Arindam] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan, Email: arindam.das@het.phys.sci.osaka-u.ac.jp;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000555774600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4486
Permanent link to this record
 

 
Author Godbole, R.M.; Maharathy, S.P.; Mandal, S.; Mitra, M.; Sinha, N.
Title Interference effect in lepton number violating and conserving meson decays for a left-right symmetric model Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 9 Pages 095009 - 22pp
Keywords
Abstract We study the effect of interference on the lepton number violating (LNV) and lepton number conserving (LNC) three-bodymeson decaysM(1)(+)-> l(i) (+) l(j)(+)pi(+/-) that arise in a TeV-scale left-right symmetric model (LRSM) with degenerate or nearly degenerate right-handed (RH) neutrinos. The LRSM contains three RH neutrinos and a RH gauge boson. The RH neutrinos with masses in the range of M-N similar to (MeV-few GeV) can give resonant enhancement in the semileptonic LNV and LNC meson decays. In the case where only one RH neutrino contributes to these decays, the predicted new physics branching ratios of semileptonic LNV and LNC meson decaysM(1)(+)-> l(i)(+) l(j)(+) pi(-) andM(+) 1 -> l(i)(+)l(j)(-) pi(+) are equal. We find that with at least two RH neutrinos contributing to the process, the LNV and LNC decay rates can differ. Depending on the neutrino mixing angles and CP-violating phases, the branching ratios of LNVand LNC decay channelsmediated by the heavy neutrinos can be either enhanced or suppressed, and the ratio of these two rates can differ from unity.
Address [Godbole, Rohini M.] Indian Inst Sci, Ctr High Energy Phys, Bengaluru 560012, India, Email: rohini@iisc.ac.in;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000719315600005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5028
Permanent link to this record
 

 
Author Mandal, S.; Miranda, O.G.; Sanchez Garcia, G.; Valle, J.W.F.; Xu, X.J.
Title Toward deconstructing the simplest seesaw mechanism Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 9 Pages 095020 - 32pp
Keywords
Abstract The triplet or type-II seesaw mechanism is the simplest way to endow neutrinos with mass in the Standard Model (SM). Here we review its associated theory and phenomenology, including restrictions from S, T, U parameters, neutrino experiments, charged lepton flavor violation as well as collider searches. We also examine restrictions coming from requiring consistency of electroweak symmetry breaking, i.e., perturbative unitarity and stability of the vacuum. Finally, we discuss novel effects associated to the scalar mediator of neutrino mass generation namely, (i) rare processes, e.g., l(alpha)-> l(beta)gamma decays, at the intensity frontier, and also (ii) four-lepton signatures in colliders at the high-energy frontier. These can be used to probe neutrino properties in an important way, providing a test of the absolute neutrino mass and mass ordering, as well as of the atmospheric octant. They may also provide the first evidence for charged lepton flavor violation in nature. In contrast, neutrino nonstandard interaction strengths are found to lie below current detectability.
Address [Mandal, Sanjoy] Korea Inst Adv Study, Seoul 02455, South Korea, Email: smandal@kias.re.kr;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000807778600004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5249
Permanent link to this record
 

 
Author Das, A.; Bhupal Dev, P.S.; Hosotani, Y.; Mandal, S.
Title Probing the minimal U(1)(X) model at future electron positron colliders via fermion pair-production channels Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 11 Pages 115030 - 28pp
Keywords
Abstract The minimal U(1)(X) extension of the Standard Model (SM) is a well-motivated new physics scenario, where anomaly cancellation dictates new neutral gauge boson (Z') couplings with the SM fermions in terms of the U(1)(X) charges of the new scalar fields. We investigate the SM charged fermion pair-production process for different values of these U(1)(X) charges at future e(-)e(+) colliders: e(+)e(-) -> f (f) over bar Apart from the standard gamma and Z-mediated processes, this model features additional s-channel (or both s and t-channel when f = e(-)) Z' exchange which interferes with the SM processes. We first estimate the bounds on the U(1)(X) coupling (g') and the Z' mass (M-Z') considering the latest dilepton and dijet constraints from the heavy resonance searches at the LHC. Then using the allowed values of g', we study the angular distributions, forward-backward (A(FB)), left-right (A(LB)), and left-right forward-backward (A(LR-FB)) asymmetries of the final states. We fmd that these observables can show substantial deviations from the SM results in the U(1)(X) model, thus providing a powerful probe of the multi-TeV Z' bosons at future e(+)e(-) colliders.
Address [Das, Arindam] Kyungpook Natl Univ, Dept Phys, Daegu 41566, South Korea, Email: arindamdas@oia.hokudai.ac.jp;
Corporate Author Thesis
Publisher (up) Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000822972700011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5283
Permanent link to this record