|   | 
Details
   web
Records
Author AGATA Collaboration (Alexander, T. et al); Gadea, A.
Title Isomeric ratios in Hg-206 Type Journal Article
Year 2015 Publication Acta Physica Polonica B Abbreviated Journal Acta Phys. Pol. B
Volume 46 Issue 3 Pages 601-605
Keywords
Abstract Hg-206 was populated in the fragmentation of an E/A = 1 GeV Pb-208 beam at GSI. It was part of a campaign to study nuclei around Pb-208 via relativistic Coulomb excitation. The observation of the known isomeric states confirmed the identification of the fragmentation products. The isomeric decays were also used to prove that the correlations between beam identification detectors and the AGATA gamma-ray tracking array worked properly and that the tracking efficiency was independent of the time relative to the prompt flash.
Address [Alexander, T.; Podolyak, Zs.; Bowry, M.; Carroll, R.; Gelletly, W.; Patel, Z.; Regan, P. H.; Walker, P. M.; Wilson, E.; Wood, R.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England
Corporate Author Thesis
Publisher (down) Wydawnictwo Uniwersytetu Jagiellonskiego Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0587-4254 ISBN Medium
Area Expedition Conference
Notes WOS:000353565500038 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2219
Permanent link to this record
 

 
Author AGATA Collaboration (Krzysiek, M. et al); Gadea, A.
Title Gamma decay of the possible 1(-) two-phonon state in Ce-140 excited via inelastic scattering of O-17 Type Journal Article
Year 2016 Publication Acta Physica Polonica B Abbreviated Journal Acta Phys. Pol. B
Volume 47 Issue 3 Pages 859-866
Keywords
Abstract The gamma decay from the low-lying dipole states of Ce-140 excited via inelastic scattering of O-17 at bombarding energy of 340 MeV was measured using the high resolution AGATA-Demonstrator array in coincidence with scattered ions detected in two segmented Delta E-E silicon detectors of the TRACE array. Particular attention is here given to the decay of the first 1(-) state at 3643 keV which is considered to be of two-phonon character. The gamma-gamma coincidence method was applied to select desired decay branch. No direct decay from this state was observed to 2(+) and 3(-) phonon states which would be the proof of the pure harmonic coupling. The comparison between experimentally obtained differential cross sections and analysis with distorted wave Born approximation (DWBA) allowed to conclude that the first 1(-) state has a different nature than higher-lying pygmy dipole states. This was possible using the form factor obtained by folding a microscopically calculated transition density.
Address [Krzysiek, M.; Kmiecik, M.; Maj, A.; Bednarczyk, P.; Ciemala, M.; Grebosz, J.; Mazurek, K.; Zieblinski, M.] H Niewodniczanski Inst Nucl Phys, PAN, PL-31342 Krakow, Poland
Corporate Author Thesis
Publisher (down) Wydawnictwo Uniwersytetu Jagiellonskiego Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0587-4254 ISBN Medium
Area Expedition Conference
Notes WOS:000373495500032 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2625
Permanent link to this record
 

 
Author AGATA Collaboration (Korten, W. et al); Gadea, A.
Title Physics opportunities with the Advanced Gamma Tracking Array: AGATA Type Journal Article
Year 2020 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 56 Issue 5 Pages 137 - 33pp
Keywords
Abstract New physics opportunities are opening up by the Advanced Gamma Tracking Array, AGATA, as it evolves to the full 4 pi instrument. AGATA is a high-resolution gamma -ray spectrometer, solely built from highly segmented high-purity Ge detectors, capable of measuring gamma rays from a few tens of keV to beyond 10 MeV, with unprecedented efficiency, excellent position resolution for individual gamma -ray interactions, and very high count-rate capability. As a travelling detector AGATA will be employed at all major current and near-future European research facilities delivering stable and radioactive ion beams.
Address [Clement, E.] CEA DRF CNRS IN2P3, GANIL, Bd Henri Becquerel,BP 55027, F-14076 Caen 05, France, Email: w.korten@cea.fr
Corporate Author Thesis
Publisher (down) Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000537289700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4422
Permanent link to this record
 

 
Author AGATA collaboration (Collado, J. et al); Civera, J.V.; Gadea, A.
Title AGATA phase 2 advancements in front-end electronics Type Journal Article
Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 59 Issue 6 Pages 133 - 20pp
Keywords
Abstract The AGATA collaboration has a long-standing leadership in the development of front-end electronics for high resolution ?-ray spectroscopy using large volume high purity germanium detectors. For two decades, the AGATA collaboration has been developing state-of-the-art digital electronics processing with high resolution sampling ADC, high-speed signal transfer and fast readout to a high throughput computing (HTC) farm for on-line pulse shape analysis. The collaboration is presently addressing the next challenge of equipping a 4p array with more than 6000 channels in high resolution mode, generating approximately 10 MHz of total trigger requests, coupled to a large variety of complementary instruments. A next generation of front-end electronics, presently under design, is based on industrial products (System on Module FPGA's), has higher integration and lower power consumption. In this contribution, the conceptual design of the new electronics is presented. The results of the very first tests of the pre-production electronics are presented as well as future perspectives.
Address [Collado, J.; Gonzalez, V.] Univ Valencia, Dept Ingn Elect, Valencia 46100, Spain, Email: gadea@ific.uv.es
Corporate Author Thesis
Publisher (down) Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:001015065300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5567
Permanent link to this record
 

 
Author AGATA Collaboration (Ralet, D. et al); Gadea, A.; Perez-Vidal, R.M.
Title Toward lifetime and g factor measurements of short-lived states in the vicinity of Pb-208 Type Journal Article
Year 2017 Publication Physica Scripta Abbreviated Journal Phys. Scr.
Volume 92 Issue 5 Pages 054004 - 4pp
Keywords multi-nucleon transfer reaction; lifetime measurement; AGATA; VAMOS plus
Abstract The multi-nucleon transfer reaction mechanism was used to produce and study nuclei in the vicinity of 208Pb. This mass region is a test case for the nuclear shell model. The mass identification of the fragments was performed with the large acceptance magnetic spectrometer VAMOS++ coupled to the AGATA gamma-tracking array. This experiment aimed to determine both lifetimes and gyromagnetic ratios of excited states with the Cologne plunger device. The analysis indicates promising results with the possibility to determine several new lifetimes in this region.
Address [Ralet, D.; Georgiev, G.; Konstantinopoulos, T.; Korichi, A.; Ljungvall, J.] Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, CSNSM, F-91405 Orsay, France, Email: damian.ralet@csnsm.in2p3.fr
Corporate Author Thesis
Publisher (down) Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949 ISBN Medium
Area Expedition Conference
Notes WOS:000399888300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3092
Permanent link to this record