|   | 
Details
   web
Records
Author Hirsch, M.; Lineros, R.A.; Morisi, S.; Palacio, J.; Rojas, N.; Valle, J.W.F.
Title WIMP dark matter as radiative neutrino mass messenger Type Journal Article
Year 2013 Publication (down) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 149 - 18pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics
Abstract The minimal seesaw extension of the Standard SU(3)(c)circle times SU(2)(L)circle times U(1)(Y) Model requires two electroweak singlet fermions in order to accommodate the neutrino oscillation parameters at tree level. Here we consider a next to minimal extension where light neutrino masses are generated radiatively by two electroweak fermions: one singlet and one triplet under SU(2)(L). These should be odd under a parity symmetry and their mixing gives rise to a stable weakly interactive massive particle (WIMP) dark matter candidate. For mass in the GeV-TeV range, it reproduces the correct relic density, and provides an observable signal in nuclear recoil direct detection experiments. The fermion triplet component of the dark matter has gauge interactions, making it also detectable at present and near future collider experiments.
Address [Hirsch, M.; Lineros, R. A.; Palacio, J.; Valle, J. W. F.] Univ Valencia, Edificio Inst Paterna, CSIC, Inst Fis Corpuscular,AHEP Grp, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000326047200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1623
Permanent link to this record
 

 
Author Aristizabal Sierra, D.; Degee, A.; Dorame, L.; Hirsch, M.
Title Systematic classification of two-loop realizations of the Weinberg operator Type Journal Article
Year 2015 Publication (down) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 040 - 41pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We systematically analyze the d = 5 Weinberg operator at 2-loop order. Using a diagrammatic approach, we identify two different interesting categories of neutrino mass models: (i) Genuine 2-loop models for which both, tree-level and 1-loop contributions, are guaranteed to be absent. And (ii) finite 2-loop diagrams, which correspond to the 1-loop generation of some particular vertex appearing in a given 1-loop neutrino mass model, thus being effectively 2-loop. From the large list of all possible 2-loop diagrams, the vast majority are infinite corrections to lower order neutrino mass models and only a moderately small number of diagrams fall into these two interesting classes. Moreover, all diagrams in class (i) are just variations of three basic diagrams, with examples discussed in the literature before. Similarly, we also show that class (ii) diagrams consists of only variations of these three plus two more basic diagrams. Finally, we show how our results can be consistently and readily used in order to construct two-loop neutrino mass models.
Address [Sierra, D. Aristizabal; Degee, A.] Univ Liege, IFPA, Dept AGO, B-4000 Liege 1, Belgium, Email: daristizabal@ulg.ac.be;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000351365700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2167
Permanent link to this record
 

 
Author Helo, J.C.; Hirsch, M.; Ota, T.; Pereira dos Santos, F.A.
Title Double beta decay and neutrino mass models Type Journal Article
Year 2015 Publication (down) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 092 - 40pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract Neutrinoless double beta decay allows to constrain lepton number violating extensions of the standard model. If neutrinos are Majorana particles, the mass mechanism will always contribute to the decay rate, however, it is not a priori guaranteed to be the dominant contribution in all models. Here, we discuss whether the mass mechanism dominates or not from the theory point of view. We classify all possible (scalar-mediated) short-range contributions to the decay rate according to the loop level, at which the corresponding models will generate Majorana neutrino masses, and discuss the expected relative size of the different contributions to the decay rate in each class. Our discussion is general for models based on the SM group but does not cover models with an extended gauge. We also work out the phenomenology of one concrete 2-loop model in which both, mass mechanism and short-range diagram, might lead to competitive contributions, in some detail.
Address [Helo, J. C.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Valparaiso, Chile, Email: juancarlos.helo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000363471700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2441
Permanent link to this record
 

 
Author Hirsch, M.; Krauss, M.E.; Opferkuch, T.; Porod, W.; Staub, F.
Title A constrained supersymmetric left-right model Type Journal Article
Year 2016 Publication (down) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 009 - 22pp
Keywords Supersymmetry Phenomenology
Abstract We present a supersymmetric left-right model which predicts gauge coupling unification close to the string scale and extra vector bosons at the TeV scale. The subtleties in constructing a model which is in agreement with the measured quark masses and mixing for such a low left-right breaking scale are discussed. It is shown that in the constrained version of this model radiative breaking of the gauge symmetries is possible and a SM-like Higgs is obtained. Additional CP-even scalars of a similar mass or even much lighter are possible. The expected mass hierarchies for the supersymmetric states differ clearly from those of the constrained MSSM. In particular, the lightest down-type squark, which is a mixture of the sbottom and extra vector-like states, is always lighter than the stop. We also comment on the model's capability to explain current anomalies observed at the LHC.
Address [Hirsch, Martin] Univ Valencia, Inst Fis Corpuscular CSIC, AHEP Grp, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000371428600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2564
Permanent link to this record
 

 
Author Helo, J.C.; Hirsch, M.; Ota, T.
Title Long-range contributions to double beta decay revisited Type Journal Article
Year 2016 Publication (down) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 006 - 32pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We discuss the systematic decomposition of all dimension-7 (d = 7) lepton number violating operators. These d = 7 operators produce momentum enhanced contributions to the long-range part of the 0 nu beta beta decay amplitude and thus are severely constrained by existing half-live limits. In our list of possible models one can find contributions to the long-range amplitude discussed previously in the literature, such as the left-right symmetric model or scalar leptoquarks, as well as some new models not considered before. The d = 7 operators generate Majorana neutrino mass terms either at tree-level, 1-loop or 2-loop level. We systematically compare constraints derived from the mass mechanism to those derived from the long-range 0 nu beta beta decay amplitude and classify our list of models accordingly. We also study one particular example decomposition, which produces neutrino masses at 2-loop level, can fit oscillation data and yields a large contribution to the long-range 0 nu beta beta decay amplitude, in some detail.
Address [Helo, J. C.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Casilla 110-5, Valparaiso, Chile, Email: juancarlos.helo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000377413400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2721
Permanent link to this record
 

 
Author Fonseca, R.M.; Hirsch, M.
Title A flipped 331 model Type Journal Article
Year 2016 Publication (down) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 003 - 12pp
Keywords Beyond Standard Model; Gauge Symmetry; Neutrino Physics
Abstract Models based on the extended SU(3)(C) x SU(3)(L) x U(1)(X) (331) gauge group usually follow a common pattern: two families of left-handed quarks are placed in anti triplet representations of the SU(3)(L) group; the remaining quark family, as well as the left-handed leptons, are assigned to triplets (or vice-versa). In this work we present a flipped 331 model where this scheme is reversed: all three quark families are in the same representation and it is the lepton families which are discriminated by the gauge symmetry. We discuss fermion masses and mixing, as well as Z' interactions, in a minimal model implementing this idea.
Address [Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,Calle Jose Beltran, E-46980 Paterna, Valencia, Spain, Email: renato.fonseca@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000381218300003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2782
Permanent link to this record
 

 
Author Anamiati, G.; Hirsch, M.; Nardi, E.
Title Quasi-Dirac neutrinos at the LHC Type Journal Article
Year 2016 Publication (down) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 010 - 19pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract Lepton number violation is searched for at the LHC using same-sign leptons plus jets. The standard lore is that the ratio of same-sign lepton to opposite-sign lepton events, R-ll, is equal to R-ll = 1 (R-ll = 0) for Majorana (Dirac) neutrinos. We clarify under which conditions the ratio Rll can assume values different from 0 and 1, and we argue that the precise value 0 < R-ll < 1 is controlled by the mass splitting versus the width of the quasi-Dirac resonances. A measurement of R-ll not equal 0, 1 would then contain valuable information about the origin of neutrino masses. We consider as an example the inverse seesaw mechanism in a left-right symmetric scenario, which is phenomenologically particularly interesting since all the heavy states in the high energy completion of the model could be within experimental reach. A prediction of this scenario is a correlation between the values of R-ll and the ratio between the rates for heavy neutrino decays into standard model gauge bosons, and into three body final states ljj mediated by off-shell W-R exchange.
Address [Anamiati, G.; Hirsch, M.] Univ Valencia, AHEP Grp, CSIC, Inst Fis Corpuscular, Edificio Inst Invest,Parc Cient Paterna, E-46071 Valencia, Spain, Email: anamiati@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000385397800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2834
Permanent link to this record
 

 
Author Gonzalez, L.; Helo, J.C.; Hirsch, M.; Kovalenko, S.G.
Title Scalar-mediated double beta decay and LHC Type Journal Article
Year 2016 Publication (down) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 130 - 15pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract The decay rate of neutrinoless double beta (0 nu beta beta) decay could be dominated by Lepton Number Violating (LNV) short-range diagrams involving only heavy scalar intermediate particles, known as “topology-II” diagrams. Examples are diagrams with diquarks, leptoquarks or charged scalars. Here, we compare the LNV discovery potentials of the LHC and 0 nu beta beta-decay experiments, resorting to three example models, which cover the range of the optimistic-pessimistic cases for 0 nu beta beta decay. We use the LHC constraints from dijet as well as leptoquark searches and find that already with 20/fb the LHC will test interesting parts of the parameter space of these models, not excluded by the current limits on 0 nu beta beta-decay.
Address [Gonzalez, L.; Helo, J. C.; Kovalenko, S. G.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Casilla 110-5, Valparaiso, Chile, Email: lorena.gonzalez@alumnos.usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000399774600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3060
Permanent link to this record
 

 
Author Cepedello, R.; Hirsch, M.; Helo, J.C.
Title Loop neutrino masses from d=7 operator Type Journal Article
Year 2017 Publication (down) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 079 - 21pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We discuss the generation of small neutrino masses from d = 71 -loop diagrams. We first systematically analyze all possible d = 7 1 -loop topologies. There is a total of 48 topologies, but only 8 of these can lead to “genuine” d = 7 neutrino masses. Here, we define genuine models to be models in which neither d = 5 nor d = 7 tree -level masses nor a d = 5 1 -loop mass appear, such that the d = 7 1 -loop is the leading order contribution to the neutrino masses. All genuine models can then be organized w.r.t. their particle content. We find there is only one diagram with no representation larger than triplet, while there are 22 diagrams with quadruplets. We briefly discuss three minimal example models of this kind.
Address [Cepedello, R.; Hirsch, M.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: ricepe@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000405916600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3223
Permanent link to this record
 

 
Author Cepedello, R.; Hirsch, M.; Helo, J.C.
Title Lepton number violating phenomenology of d=7 neutrino mass models Type Journal Article
Year 2018 Publication (down) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 009 - 24pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We study the phenomenology of d = 7 1-loop neutrino mass models. All models in this particular class require the existence of several new SU(2)(L) multiplets, both scalar and fermionic, and thus predict a rich phenomenology at the LHC. The observed neutrino masses and mixings can easily be fitted in these models. Interestingly, despite the smallness of the observed neutrino masses, some particular lepton number violating (LNV) final states can arise with observable branching ratios. These LNV final states consists of leptons and gauge bosons with high multiplicities, such as 4/ + 4W, 6/ + 2W etc. We study current constraints on these models from upper bounds on charged lepton flavour violating decays, existing lepton number conserving searches at the LHC and discuss possible future LNV searches.
Address [Cepedello, R.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: ricepe@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000419113900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3443
Permanent link to this record