Home | << 1 2 3 4 5 6 7 8 9 >> |
![]() |
Cosme, C., Figueroa, D. G., & Loayza, N. (2023). Gravitational wave production from preheating with trilinear interactions. J. Cosmol. Astropart. Phys., 05(5), 023–30pp.
Abstract: We investigate the production of gravitational waves (GWs) during preheating with monomial/polynomial inflationary potentials, considering a trilinear coupling & phi;x2 between a singlet inflaton & phi; and a daughter scalar field x. For sufficiently large couplings, the trilinear interaction leads to an exponential production of x particles and, as a result, a large stochastic GW background (SGWB) is generated throughout the process. We study the linear and non-linear dynamics of preheating with lattice simulations, following the production of GWs through all relevant stages. We find that large couplings lead to SGWBs with amplitudes today that can reach up to h2 �(0) GW <^> 5 & BULL; 10-9. These backgrounds are however peaked at high frequencies fp > 5 & BULL; 106 Hz, which makes them undetectable by current/planned GW observatories. As the amount of GWs produced is in any case remarkable, we discuss the prospects for probing the SGWB indirectly by using constraints on the effective number of relativistic species in the universe Neff.
|
Jeong, K. S., & Park, W. I. (2023). Cosmology with a supersymmetric local B – L model. J. Cosmol. Astropart. Phys., 11(11), 016–34pp.
Abstract: We propose a minimal gauged U(1)(B-L) extension of the minimal supersymmetric Standard Model (MSSM) which resolves the cosmological moduli problem via thermal inflation, and realizes late-time Affleck-Dine leptogensis so as to generate the right amount of baryon asymmetry at the end of thermal inflation. The present relic density of dark matter can be explained by sneutrinos, MSSM neutralinos, axinos, or axions. Cosmic strings from U(1)(B-L) breaking are very thick, and so the expected stochastic gravitational wave background from cosmic string loops has a spectrum different from the one in the conventional Abelian-Higgs model, as would be distinguishable at least at LISA and DECIGO. The characteristic spectrum is due to a flat potential, and may be regarded as a hint of supersymmetry. Combined with the resolution of moduli problem, the expected signal of gravitational waves constrains the U(1)(B-L) breaking scale to be O(10(12-13)) GeV. Interestingly, our model provides a natural possibility for explaining the observed ultra-high-energy cosmic rays thanks to the fact that the core width of strings in our scenario is very large, allowing a large enhancement of particle emissions from the cusps of string loops. Condensation of LHu flat-direction inside of string cores arises inevitably and can also be the main source of the ultra-high-energy cosmic rays accompanied by ultra-high-energy lightest supersymmetric particles.
|
Forconi, M., Giare, W., Mena, O., Ruchika, Di Valentino, E., Melchiorri, A., et al. (2024). A double take on early and interacting dark energy from JWST. J. Cosmol. Astropart. Phys., 05(5), 097–37pp.
Abstract: The very first light captured by the James Webb Space Telescope (JWST) revealed a population of galaxies at very high redshifts more massive than expected in the canonical Lambda CDM model of structure formation. Barring, among others, a systematic origin of the issue, in this paper, we test alternative cosmological perturbation histories. We argue that models with a larger matter component ohm m and/or a larger scalar spectral index n s can substantially improve the fit to JWST measurements. In this regard, phenomenological extensions related to the dark energy sector of the theory are appealing alternatives, with Early Dark Energy emerging as an excellent candidate to explain (at least in part) the unexpected JWST preference for larger stellar mass densities. Conversely, Interacting Dark Energy models, despite producing higher values of matter clustering parameters such as sigma 8 , are generally disfavored by JWST measurements. This is due to the energy -momentum flow from the dark matter to the dark energy sector, implying a smaller matter energy density. Upcoming observations may either strengthen the evidence or falsify some of these appealing phenomenological alternatives to the simplest Lambda CDM picture.
|
Dimitriou, A., Figueroa, D. G., & Zaldivar, B. (2024). Fast likelihood-free reconstruction of gravitational wave backgrounds. J. Cosmol. Astropart. Phys., 09(9), 032–51pp.
Abstract: based) techniques for reconstructing the spectral shape of a gravitational wave background (GWB). We focus on the reconstruction of an arbitrarily shaped signal (approximated by a piecewise power-law in many frequency bins) by the LISA detector, but the method can be easily extended to either template-dependent signals, or to other detectors, as long as a characterisation of the instrumental noise is available. As proof of the technique, we quantify the ability of LISA to reconstruct signals of arbitrary spectral shape (blind reconstruction), considering a diversity of frequency profiles, and including astrophysical backgrounds in some cases. As a teaser of how the method can reconstruct signals characterised by a parameter-dependent template (template reconstruction), we present a dedicated study for power-law signals. While our technique has several advantages with respect to traditional MCMC methods, we validate it with the latter for concrete cases. This work opens the door for both fast and accurate Bayesian parameter estimation of GWBs, with essentially no computational overhead during the inference step. Our set of tools are integrated into the package GWBackFinder, which is publicly available in GitHub.
|
Figueroa, D. G., & Loayza, N. (2025). Geometric reheating of the Universe. J. Cosmol. Astropart. Phys., 03(3), 073–44pp.
Abstract: We study the post-inflationary energy transfer from the inflaton (phi) into a scalar field (chi) non-minimally coupled to gravity through xi R|chi|2, considering models with inflaton potential Vinf proportional to |phi| p around phi = 0. This corresponds to the paradigm of geometric preheating, which we extend to its non-linear regime via lattice simulations. Considering alpha-attractor T-mo del potentials as a proxy, we study the viability of proper reheating for p = 2, 4, 6, determining whether radiation domination (RD) due to energetic dominance of chi over phi, can be achieved. For large inflationary scales Lambda, reheating is frustrated for p = 2, it can be partially achieved for p = 4, and it becomes very efficient for p = 6. Efficient reheating can be however blocked if chi sustains self-interactions (unless these are extremely feeble), or if Lambda is low enough, so that inflaton fragmentation brings the universe rapidly into RD. Whenever RD is achieved, either due to reheating (into chi) or to inflaton fragmentation, we characterize the energy and time scales of the problem, as a function of Lambda and xi.
Keywords: physics of the early universe; inflation
|