|   | 
Details
   web
Records
Author Ramirez-Uribe, S.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R.
Title From Five-Loop Scattering Amplitudes to Open Trees with the Loop-Tree Duality Type Journal Article
Year 2022 Publication (down) Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 14 Issue 12 Pages 2571 - 14pp
Keywords perturbative QFT; higher-order calculations; multiloop Feynman integrals
Abstract Characterizing multiloop topologies is an important step towards developing novel methods at high perturbative orders in quantum field theory. In this article, we exploit the Loop-Tree Duality (LTD) formalism to analyse multiloop topologies that appear for the first time at five loops. Explicitly, we open the loops into connected trees and group them according to their topological properties. Then, we identify a kernel generator, the so-called N7MLT universal topology, that allows us to describe any scattering amplitude of up to five loops. Furthermore, we provide factorization and recursion relations that enable us to write these multiloop topologies in terms of simpler subtopologies, including several subsets of Feynman diagrams with an arbitrary number of loops. Our approach takes advantage of many symmetries present in the graphical description of the original fundamental five-loop topologies. The results obtained in this article might shed light into a more efficient determination of higher-order corrections to the running couplings, which are crucial in the current and future precision physics program.
Address [Ramirez-Uribe, Selomit; Rodrigo, German] Univ Valencia, Inst Fis Corpuscular, Consejo Super Invest Cient, Parc Cient, E-46980 Paterna, Spain, Email: roger@uas.edu.mx
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000904374000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5450
Permanent link to this record
 

 
Author Van Isacker, P.; Algora, A.; Vitéz-Sveiczer, A.; Kiss, G.G.; Orrigo, S.E.A.; Rubio, B.; Aguilera, P.
Title Gamow-Teller Beta Decay and Pseudo-SU(4) Symmetry Type Journal Article
Year 2023 Publication (down) Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 15 Issue 11 Pages 2001 - 15pp
Keywords Gamow-Teller beta decay; pseudo-SU(4) symmetry; odd-odd N = Z nuclei
Abstract We report on recent experimental results on beta decay into self-conjugate ( N = Z) nuclei with mass number 58 <= A <= 70. Super-allowed b decays from the J(pi) = 0(+) ground state of a Z = N + 2 parent nucleus are to the isobaric analogue state through so-called Fermi transitions and to J(pi) = 1(+) states by way of Gamow-Teller (GT) transitions. The operator of the latter decay is a generator of Wigner's SU(4) algebra and as a consequence GT transitions obey selection rules associated with this symmetry. Since SU(4) is progressively broken with increasing A, mainly as a consequence of the spinorbit interaction, this symmetry is not relevant for the nuclei considered here. We argue, however, that the pseudo-spin-orbit splitting can be small in nuclei with 58 <= A <= 70, in which case nuclear states exhibit an approximate pseudo-SU(4) symmetry. To test this conjecture, GT decay strength is calculated with use of a schematic Hamiltonian with pseudo-SU(4) symmetry. Some generic features of the GT beta decay due to pseudo-SU(4) symmetry are pointed out. The experimentally observed GT strength indicates a restoration of pseudo-SU(4) symmetry for A = 70.
Address [Van Isacker, Piet] CEA, DRF, Grand Accelerateur Natl Ions Lourds GANIL, CNRS,IN2P3, Blvd Henri Becquerel, F-14076 Caen, France, Email: isacker@ganil.fr;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001114520800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5843
Permanent link to this record
 

 
Author Aldana, M.; Lledo, M.A.
Title The Fuzzy Bit Type Journal Article
Year 2023 Publication (down) Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 15 Issue 12 Pages 2103 - 25pp
Keywords fuzzy sets; quantum logic; multivalued logic; Quantum Mechanics
Abstract In this paper, the formulation of Quantum Mechanics in terms of fuzzy logic and fuzzy sets is explored. A result by Pykacz, which establishes a correspondence between (quantum) logics (lattices with certain properties) and certain families of fuzzy sets, is applied to the Birkhoff-von Neumann logic, the lattice of projectors of a Hilbert space. Three cases are considered: the qubit, two qubits entangled, and a qutrit 'nested' inside the two entangled qubits. The membership functions of the fuzzy sets are explicitly computed and all the connectives of the fuzzy sets are interpreted as operations with these particular membership functions. In this way, a complete picture of the standard quantum logic in terms of fuzzy sets is obtained for the systems considered.
Address [Aldana, Milagrosa] Univ Simon Bolivar, Dept Ciencias Tierra, Valle De Sartenejas 89000, Baruta, Venezuela, Email: maldana@usb.ve;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001131238400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5962
Permanent link to this record
 

 
Author Conde, D.; Castillo, F.L.; Escobar, C.; García, C.; Garcia Navarro, J.E.; Sanz, V.; Zaldívar, B.; Curto, J.J.; Marsal, S.; Torta, J.M.
Title Forecasting Geomagnetic Storm Disturbances and Their Uncertainties Using Deep Learning Type Journal Article
Year 2023 Publication (down) Space Weather Abbreviated Journal Space Weather
Volume 21 Issue 11 Pages e2023SW003474 - 27pp
Keywords geomagnetic storms; deep learning; forecasting; SYM-H; uncertainties; hyper-parameter optimization
Abstract Severe space weather produced by disturbed conditions on the Sun results in harmful effects both for humans in space and in high-latitude flights, and for technological systems such as spacecraft or communications. Also, geomagnetically induced currents (GICs) flowing on long ground-based conductors, such as power networks, potentially threaten critical infrastructures on Earth. The first step in developing an alarm system against GICs is to forecast them. This is a challenging task given the highly non-linear dependencies of the response of the magnetosphere to these perturbations. In the last few years, modern machine-learning models have shown to be very good at predicting magnetic activity indices. However, such complex models are on the one hand difficult to tune, and on the other hand they are known to bring along potentially large prediction uncertainties which are generally difficult to estimate. In this work we aim at predicting the SYM-H index characterizing geomagnetic storms multiple-hour ahead, using public interplanetary magnetic field (IMF) data from the Sun-Earth L1 Lagrange point and SYM-H data. We implement a type of machine-learning model called long short-term memory (LSTM) network. Our scope is to estimate the prediction uncertainties coming from a deep-learning model in the context of forecasting the SYM-H index. These uncertainties will be essential to set reliable alarm thresholds. The resulting uncertainties turn out to be sizable at the critical stages of the geomagnetic storms. Our methodology includes as well an efficient optimization of important hyper-parameters of the LSTM network and robustness tests.
Address [Conde, D.; Escobar, C.; Garcia, C.; Garcia, J. E.; Sanz, V.; Zaldivar, B.] Univ Valencia, CSIC, Ctr Mixto, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Daniel.Conde@ific.uv.es
Corporate Author Thesis
Publisher Amer Geophysical Union Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001104189700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5804
Permanent link to this record
 

 
Author SCiMMA and SNEWS Collaborations (Baxter, A.L. et al); Colomer, M.
Title Collaborative experience between scientific software projects using Agile Scrum development Type Journal Article
Year 2022 Publication (down) Software-Practice & Experience Abbreviated Journal Softw.-Pract. Exp.
Volume 52 Issue Pages 2077-2096
Keywords Agile; cyberinfrastructure; multimessenger astrophysics; scientific computing; software development
Abstract Developing sustainable software for the scientific community requires expertise in software engineering and domain science. This can be challenging due to the unique needs of scientific software, the insufficient resources for software engineering practices in the scientific community, and the complexity of developing for evolving scientific contexts. While open-source software can partially address these concerns, it can introduce complicating dependencies and delay development. These issues can be reduced if scientists and software developers collaborate. We present a case study wherein scientists from the SuperNova Early Warning System collaborated with software developers from the Scalable Cyberinfrastructure for Multi-Messenger Astrophysics project. The collaboration addressed the difficulties of open-source software development, but presented additional risks to each team. For the scientists, there was a concern of relying on external systems and lacking control in the development process. For the developers, there was a risk in supporting a user-group while maintaining core development. These issues were mitigated by creating a second Agile Scrum framework in parallel with the developers' ongoing Agile Scrum process. This Agile collaboration promoted communication, ensured that the scientists had an active role in development, and allowed the developers to evaluate and implement the scientists' software requirements. The collaboration provided benefits for each group: the scientists actuated their development by using an existing platform, and the developers utilized the scientists' use-case to improve their systems. This case study suggests that scientists and software developers can avoid scientific computing issues by collaborating and that Agile Scrum methods can address emergent concerns.
Address [Baxter, Amanda L.; Clark, Michael; Kopec, Abigail; Lang, Rafael F.; Li, Shengchao; Linvill, Mark W.; Milisavljevic, Danny; Weil, Kathryn E.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA, Email: adepoian@purdue.edu;
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-0644 ISBN Medium
Area Expedition Conference
Notes WOS:000830363800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5305
Permanent link to this record