|   | 
Details
   web
Records
Author Wu, J. et al; Algora, A.; Agramunt, J.; Morales, A.I.; Orrigo, S.E.A.; Tain, J.L.; Tarifeño-Saldivia, A.; Tolosa-Delgado, A.
Title First observation of isomeric states in 111Zr, 113Nb, and 115Mo Type Journal Article
Year 2022 Publication (down) Physical Review C Abbreviated Journal Phys. Rev. C
Volume 106 Issue 6 Pages 064328 - 5pp
Keywords
Abstract Isomeric states in the neutron-rich nuclei 111Zr [T1/2 = 0.10(7) μs], 113Nb [T1/2 = 0.7(4) μs], 115Mo [T1/2 = 46(3) μs] were first identified at the Radioactive Ion Beam Factory (RIBF) of RIKEN by using in-flight fission and fragmentation of a 238U beam at an energy of 345 MeV/u. This is a brief report of the gamma transitions de -exciting from isomeric states and half-lives measurements, which provides the first spectroscopy in the nuclear region of prolate-to-oblate shape-phase transition around mass A approximate to 110.
Address [Wu, J.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA, Email: jwu2@bnl.gov
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000906391600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5452
Permanent link to this record
 

 
Author Fuster-Martinez, N.; Bruce, R.; Hofer, M.; Persson, T.; Redaelli, S.; Tomas, R.
Title Aperture measurements with ac dipoles and movable collimators in the Large Hadron Collider Type Journal Article
Year 2022 Publication (down) Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams
Volume 25 Issue 10 Pages 101002 - 13pp
Keywords
Abstract This paper presents a first experimental demonstration of a new nondestructive method for aperture measurements based on ac dipoles. In high intensity particle colliders, such as the CERN Large Hadron Collider (LHC), aperture measurements are crucial for a safe operation while optimizing the optics in order to reduce the size of the colliding beams and hence increase the luminosity. In the LHC, this type of measurements became mandatory during beam commissioning and the current method used is based on the destructive blowup of bunches using a transverse damper. The new method presented in this paper uses the ac-dipole excitation to generate adiabatic forced oscillations of the beam in order to create losses to identify the smallest aperture in the machine without blowing up the beam emittance. A precise and tuneable control of the oscillation amplitude enables the beams to be reused for several aperture measurements, as well as for other subsequent commissioning activities. Measurements performed with the new method are presented and compared with the current LHC transverse damper method for two different beam energies and two different operational optics.
Address [Fuster-Martinez, N.] CSIC UV, Inst Fis Corpuscular, Valencia 46908, Spain, Email: nuria.fuster@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000875736400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5397
Permanent link to this record
 

 
Author Capra, S. et al; Gadea, A.
Title GALTRACE: A highly segmented silicon detector array for charged particle spectroscopy and discrimination Type Journal Article
Year 2022 Publication (down) Nuovo Cimento C Abbreviated Journal Nuovo Cim. C
Volume 45 Issue 5 Pages 98 - 4pp
Keywords
Abstract GALTRACE is an array of segmented silicon detectors specifically built to work as an ancillary of the GALILEO gamma-ray spectrometer at Legnaro National Laboratory of INFN. GALTRACE consists of four telescopic Delta E-Edetectors which allow discriminating light charged particles also via pulse-shape analysis techniques. The good angular and energy resolutions, together with particle discrimination capabilities, make GALTRACE suitable for experiments where coincidences with specific emitted particles allow for the selection of reaction channels with very low cross section. The first in-beam experiment is reported here, aiming at identifying a narrow resonance, near-proton-threshold state in B-11, currently under discussion.
Address [Capra, S.; Ziliani, S.; LEONI, S.; PULLIA, A.; BOTTONI, S.; CAMERA, F.; CRESPI, F. C. L.; GAMBA, E.; MILLION, B.; POLETTINI, M.] Univ Milan, Milan, Italy
Corporate Author Thesis
Publisher Soc Italiana Fisica Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2037-4909 ISBN Medium
Area Expedition Conference
Notes WOS:000819587500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5282
Permanent link to this record
 

 
Author HISPEC-DESPEC Collaboration (Polettini, M. et al); Algora, A.; Morales, A.I.; Orrigo, S.E.A.
Title Decay studies in the A similar to 225 Po-Fr region from the DESPEC campaign at GSI in 2021 Type Journal Article
Year 2022 Publication (down) Nuovo Cimento C Abbreviated Journal Nuovo Cim. C
Volume 45 Issue 5 Pages 125 - 4pp
Keywords
Abstract The HISPEC-DESPEC collaboration aims at investigating the struc-ture of exotic nuclei formed in fragmentation reactions with decay spectroscopymeasurements, as part of the FAIR Phase-0 campaign at GSI. This paper reportson first results of an experiment performed in spring 2021, with a focus on beta-decaystudies in the Po-Fr nuclei in the 220 < A <230 island of octupole deformationexploiting the DESPEC setup. Ion-beta correlations and fast-timing techniques arebeing employed, giving an insight into this difficult-to-reach region.
Address [Polettini, M.; Benzoni, G.; Genna, D.; Bracco, A.; Bottoni, S.; Camera, F.; Crespi, F. C. L.; Gamba, E. R.; Leoni, S.; Million, B.; Porzio, C.; Wieland, O.; Ziliani, S.] Univ Milan, Dipartimento Fis, Milan, Italy
Corporate Author Thesis
Publisher Soc Italiana Fisica Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2037-4909 ISBN Medium
Area Expedition Conference
Notes WOS:000819174100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5292
Permanent link to this record
 

 
Author Kim, J.S.; Lopez-Fogliani, D.E.; Perez, A.D.; Ruiz de Austri, R.
Title The new (g-2)(mu) and right-handed sneutrino dark matter Type Journal Article
Year 2022 Publication (down) Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 974 Issue Pages 115637 - 23pp
Keywords
Abstract In this paper we investigate the (g – 2)(mu) discrepancy in the context of the R-parity conserving next-to minimal supersymmetric Standard Model plus right-handed neutrinos superfields. The model has the ability to reproduce neutrino physics data and includes the interesting possibility to have the right-handed sneutrino as the lightest supersymmetric particle and a viable dark matter candidate. Since right-handed sneutrinos are singlets, no new contributions for delta a(mu) with respect to the MSSM and NMSSM are present. However, the possibility to have the right-handed sneutrino as the lightest supersymmetric particle opens new ways to escape Large Hadron Collider and direct detection constraints. In particular, we find that dark matter masses within 10 less than or similar to m((upsilon) over tildeR) less than or similar to 600 GeV are fully compatible with current experimental constraints. Remarkably, not only spectra with light sleptons are needed, but we obtain solutions with m((mu) over tilde) greater than or similar to 600 GeV in the entire dark matter mass range that could be probed by new (g – 2)(mu) data in the near future. In addition, dark matter direct detection experiments will be able to explore a sizable portion of the allowed parameter space with mvR < 300 GeV, while indirect detection experiments will be able to probe a much smaller fraction within 200 less than or similar to m((nu)over tilde>R) less than or similar to 350 GeV.
Address [Kim, Jong Soo] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa, Email: jongsoo.kim@tu-dortmund.de;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000760320700019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5135
Permanent link to this record