toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Del Debbio, L.; Ramos, A. url  doi
openurl 
  Title Lattice determinations of the strong coupling Type Journal Article
  Year 2021 Publication (down) Physics Reports Abbreviated Journal Phys. Rep.-Rev. Sec. Phys. Lett.  
  Volume 920 Issue Pages 1-71  
  Keywords QCD; Renormalization; Strong coupling; Lattice field theory  
  Abstract Lattice QCD has reached a mature status. State of the art lattice computations include u, d, s (and even the c) sea quark effects, together with an estimate of electromagnetic and isospin breaking corrections for hadronic observables. This precise and first principles description of the standard model at low energies allows the determination of multiple quantities that are essential inputs for phenomenology and not accessible to perturbation theory. One of the fundamental parameters that are determined from simulations of lattice QCD is the strong coupling constant, which plays a central role in the quest for precision at the LHC. Lattice calculations currently provide its best determinations, and will play a central role in future phenomenological studies. For this reason we believe that it is timely to provide a pedagogical introduction to the lattice determinations of the strong coupling. Rather than analysing individual studies, the emphasis will be on the methodologies and the systematic errors that arise in these determinations. We hope that these notes will help lattice practitioners, and QCD phenomenologists at large, by providing a self-contained introduction to the methodology and the possible sources of systematic error. The limiting factors in the determination of the strong coupling turn out to be different from the ones that limit other lattice precision observables. We hope to collect enough information here to allow the reader to appreciate the challenges that arise in order to improve further our knowledge of a quantity that is crucial for LHC phenomenology. Crown Copyright & nbsp;(c) 2021 Published by Elsevier B.V. All rights reserved.  
  Address [Del Debbio, Luigi] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland, Email: luigi.del.debbio@ed.ac.uk;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000659901700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4843  
Permanent link to this record
 

 
Author Abele, H. et al; Algora, A.; Gonzalez-Alonso, M.; Novella, P. url  doi
openurl 
  Title Particle physics at the European Spallation Source Type Journal Article
  Year 2023 Publication (down) Physics Reports Abbreviated Journal Phys. Rep.  
  Volume 1023 Issue Pages 1-84  
  Keywords ESS; Neutrons; NNBAR; ESSnuSB; nEDM  
  Abstract Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world's brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).  
  Address [Fynbo, H. O. U.; Uggerhoj, U. I.] Aarhus Univ, Dept Phys & Astron, Aarhus, Denmark, Email: milstead@fysik.su.se  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001063474900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5685  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for dark matter annihilation in the earth using the ANTARES neutrino telescope Type Journal Article
  Year 2017 Publication (down) Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 16 Issue Pages 41-48  
  Keywords Dark matter; Neutrino telescope; ANTARES; Indirect detection; WIMP  
  Abstract A search for a neutrino signal from WIMP pair annihilations in the centre of the Earth has been performed with the data collected with the ANTARES neutrino telescope from 2007 to 2012. The event selection criteria have been developed and tuned to maximise the sensitivity of the experiment to such a neutrino signal. No significant excess of neutrinos over the expected background has been observed. Upper limits at 90% C.L. on the WIMP annihilation rate in the Earth and the spin independent scattering cross-section of WIMPs to nucleons sigma(SI)(p) were calculated for WIMP pair annihilations into either iota(+) iota(-), W+W-, b (b) over bar or the non-SUSY v mu(v) over bar as a function of the WIMP mass (between 25 GeV/c(2) and 1000 GeV/c(2)) and as a function of the thermally averaged annihilation cross section times velocity <sigma A(v)>(Earth) of the WIMPs in the centre of the Earth. For masses of the WIMP close to the mass of iron nuclei (50 GeV/c(2)), the obtained limits on sigma(SI)(p) are more stringent than those obtained by other indirect searches.  
  Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France, Email: antares.spokesperson@in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-6864 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000405461200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3201  
Permanent link to this record
 

 
Author Begone, G.; Deisenroth, M.P.; Kim, J.S.; Liem, S.; Ruiz de Austri, R.; Welling, M. url  doi
openurl 
  Title Accelerating the BSM interpretation of LHC data with machine learning Type Journal Article
  Year 2019 Publication (down) Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 24 Issue Pages 100293 - 5pp  
  Keywords  
  Abstract The interpretation of Large Hadron Collider (LHC) data in the framework of Beyond the Standard Model (BSM) theories is hampered by the need to run computationally expensive event generators and detector simulators. Performing statistically convergent scans of high-dimensional BSM theories is consequently challenging, and in practice unfeasible for very high-dimensional BSM theories. We present here a new machine learning method that accelerates the interpretation of LHC data, by learning the relationship between BSM theory parameters and data. As a proof-of-concept, we demonstrate that this technique accurately predicts natural SUSY signal events in two signal regions at the High Luminosity LHC, up to four orders of magnitude faster than standard techniques. The new approach makes it possible to rapidly and accurately reconstruct the theory parameters of complex BSM theories, should an excess in the data be discovered at the LHC.  
  Address [Begone, Gianfranco; Liem, Sebastian] Univ Amsterdam, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: jongsoo.kim@tu-dortmund.de  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-6864 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000465292500018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3994  
Permanent link to this record
 

 
Author Blas, D.; Caputo, A.; Ivanov, M.M.; Sberna, L. url  doi
openurl 
  Title No chiral light bending by clumps of axion-like particles Type Journal Article
  Year 2020 Publication (down) Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 27 Issue Pages 100428 - 4pp  
  Keywords  
  Abstract We study the propagation of light in the presence of a parity-violating coupling between photons and axion-like particles (ALPs). Naively, this interaction could lead to a split of light rays into two separate beams of different polarization chirality and with different refraction angles. However, by using the eikonal method we explicitly show that this is not the case and that ALP clumps do not produce any spatial birefringence. This happens due to non-trivial variations of the photon's frequency and wavevector, which absorb time-derivatives and gradients of the ALP field. We argue that these variations represent a new way to probe the ALP-photon coupling with precision frequency measurements.  
  Address [Blas, Diego] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: mi1271@nyu.edu  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-6864 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000515668000021 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4315  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva