toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Giare, W.; Renzi, F.; Melchiorri, A.; Mena, O.; Di Valentino, E. url  doi
openurl 
  Title Cosmological forecasts on thermal axions, relic neutrinos, and light elements Type Journal Article
  Year 2022 Publication (down) Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 511 Issue 1 Pages 1373-1382  
  Keywords cosmic background radiation; cosmological parameters; dark matter; early Universe; cosmology: observations  
  Abstract One of the targets of future cosmic microwave background (CMB) and baryon acoustic oscillation measurements is to improve the current accuracy in the neutrino sector and reach a much better sensitivity on extra dark radiation in the early Universe. In this paper, we study how these improvements can be translated into constraining power for well-motivated extensions of the standard model of elementary particles that involve axions thermalized before the quantum chromodynamics (QCD) phase transition by scatterings with gluons. Assuming a fiducial Lambda cold dark matter cosmological model, we simulate future data for Stage-IV CMB-like and Dark Energy Spectroscopic Instrument (DESI)-like surveys and analyse a mixed scenario of axion and neutrino hot dark matter. We further account also for the effects of these QCD axions on the light element abundances predicted by big bang nucleosynthesis. The most constraining forecasted limits on the hot relic masses are m(a) less than or similar to 0.92 eV and n-ary sumation m(nu) less than or similar to 0.12 eV at 95 per cent Confidence Level, showing that future cosmic observations can substantially improve the current bounds, supporting multimessenger analyses of axion, neutrino, and primordial light element properties.  
  Address [Giare, William; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: william.giare@gmail.com  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000770034000012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5192  
Permanent link to this record
 

 
Author n_TOF Collaboration (Mendoza, E. et al); Giubrone, G.; Tain, J.L. doi  openurl
  Title Improved Neutron Capture Cross Section Measurements with the n_TOF Total Absorption Calorimeter Type Journal Article
  Year 2011 Publication (down) Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages 1813-1816  
  Keywords ND2010; Nuclear data; n_TOF; Background; Monte Carlo; Neutron; Time of flight; Cross section; Calorimeter; Shielding; Simulation; Total absorption; Gamma ray; Neutron capture  
  Abstract The n_TOF collaboration operates a Total Absorption Calorimeter (TAC) [1] for measuring neutron capture cross-sections of low-mass and/or radioactive samples. The results obtained with the TAC have led to a substantial improvement of the capture cross sections of (237)Np and (240)Pu [2]. The experience acquired during the first measurements has allowed us to optimize the performance of the TAC and to improve the capture signal to background ratio, thus opening the way to more complex and demanding measurements on rare radioactive materials. The new design has been reached by a series of detailed Monte Carlo simulations of complete experiments and dedicated test measurements. The new capture setup will be presented and the main achievements highlighted.  
  Address [Mendoza, E; Becares, V; Casado, A; Cano-Ott, D; Fernandez-Ordonez, M; Gonzalez-Romero, E; Guerrero, C; Martinez, T; Vidriales, JJ] Ctr Invest Energet Medioambientales & Tecnol, Madrid 28040, Spain, Email: emilio.mendoza@ciemat.es  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700086 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 738  
Permanent link to this record
 

 
Author de Salas, P.F.; Gariazzo, S.; Mena, O.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title Neutrino Mass Ordering From Oscillations and Beyond: 2018 Status and Future Prospects Type Journal Article
  Year 2018 Publication (down) Frontiers in Astronomy and Space Sciences Abbreviated Journal Front. Astron. Space Sci.  
  Volume 5 Issue Pages 36 - 50pp  
  Keywords neutrino mass ordering; neutrino oscillations; neutrinoless double beta (0v beta beta) decay; large scale structure formation; cosmic microwave Background (CMB); neutrino masses and flavor mixing  
  Abstract The ordering of the neutrino masses is a crucial input for a deep understanding of flavor physics, and its determination may provide the key to establish the relationship among the lepton masses and mixings and their analogous properties in the quark sector. The extraction of the neutrino mass ordering is a data-driven field expected to evolve very rapidly in the next decade. In this review, we both analyse the present status and describe the physics of subsequent prospects. Firstly, the different current available tools to measure the neutrino mass ordering are described. Namely, reactor, long-baseline (accelerator and atmospheric) neutrino beams, laboratory searches for beta and neutrinoless double beta decays and observations of the cosmic background radiation and the large scale structure of the universe are carefully reviewed. Secondly, the results from an up-to-date comprehensive global fit are reported: the Bayesian analysis to the 2018 publicly available oscillation and cosmological data sets provides strong evidence for the normal neutrino mass ordering vs. the inverted scenario, with a significance of 3.5 standard deviations. This preference for the normal neutrino mass ordering is mostly due to neutrino oscillation measurements. Finally, we shall also emphasize the future perspectives for unveiling the neutrinomass ordering. In this regard, apart from describing the expectations from the aforementioned probes, we also focus on those arising from alternative and novel methods, as 21 cm cosmology, core-collapse supernova neutrinos and the direct detection of relic neutrinos.  
  Address [de Salas, Pablo F.; Gariazzo, Stefano; Mena, Olga; Ternes, Christoph A.; Tortola, Mariam] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: omena@ific.uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-987x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446788500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3755  
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Mena, O.; Palomares-Ruiz, S. url  doi
openurl 
  Title A Brief Review on Primordial Black Holes as Dark Matter Type Journal Article
  Year 2021 Publication (down) Frontiers in Astronomy and Space Sciences Abbreviated Journal Front. Astron. Space Sci.  
  Volume 8 Issue Pages 681084 - 10pp  
  Keywords primordial black holes; dark matter; cosmology; accretion; 21 cm cosmology; gravitational waves; cosmic microwave background; microlensing  
  Abstract Primordial black holes (PBHs) represent a natural candidate for one of the components of the dark matter (DM) in the Universe. In this review, we shall discuss the basics of their formation, abundance and signatures. Some of their characteristic signals are examined, such as the emission of particles due to Hawking evaporation and the accretion of the surrounding matter, effects which could leave an impact in the evolution of the Universe and the formation of structures. The most relevant probes capable of constraining their masses and population are discussed.  
  Address [Villanueva-Domingo, Pablo; Mena, Olga; Palomares-Ruiz, Sergio] CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Paterna, Spain, Email: pablo.villanueva.domingo@gmail.com  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-987x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000660081700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4852  
Permanent link to this record
 

 
Author Reichardt, C.L.; de Putter, R.; Zahn, O.; Hou, Z. url  doi
openurl 
  Title New limits on early dark energy from the South Pole telescope Type Journal Article
  Year 2012 Publication (down) Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume 749 Issue 1 Pages L9 - 5pp  
  Keywords cosmic background radiation; dark energy; early universe  
  Abstract We present new limits on early dark energy (EDE) from the cosmic microwave background (CMB) using data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite on large angular scales and South Pole Telescope on small angular scales. We find a strong upper limit on the EDE density of Omega(e) < 0.018 at 95% confidence, a factor of three improvement over WMAP data alone. We show that adding lower-redshift probes of the expansion rate to the CMB data improves constraints on the dark energy equation of state, but not the EDE density. We also explain how small-scale CMB temperature anisotropy constrains EDE.  
  Address [Reichardt, C. L.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA, Email: cr@bolo.berkeley.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302143100009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 962  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva