toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Brown, J.M.C.; Dimmock, M.R.; Gillam, J.E.; Paganin, D.M. doi  openurl
  Title A low energy bound atomic electron Compton scattering model for Geant4 Type Journal Article
  Year 2014 Publication (down) Nuclear Instruments & Methods in Physics Research B Abbreviated Journal Nucl. Instrum. Methods Phys. Res. B  
  Volume 338 Issue Pages 77-88  
  Keywords Compton scattering; Geant4; Radiation transport modelling; Monte Carlo method  
  Abstract A two-body fully relativistic three-dimensional scattering framework has been utilised to develop an alternative Compton scattering computational model to those adapted from Ribberfors' work for Monte Carlo modelling of Compton scattering. Using a theoretical foundation that ensures the conservation of energy and momentum in the relativistic impulse approximation, this new model, the Monash University Compton scattering model, develops energy and directional algorithms for both the scattered photon and ejected Compton electron from first principles. The Monash University Compton scattering model was developed to address the limitation of the Compton electron directionality algorithms of other computational models adapted from Ribberfors' work. Here the development of the Monash University Compton scattering model, including its implementation in a Geant4 low energy electromagnetic physics class, G4LowEPComptonModel, is outlined. Assessment of the performance of G4LowEPComptonModel was undertaken in two steps: (1) comparison with respect to the two standard Compton scattering classes of Geant4 version 9.5, G4LivermoreComptonModel and G4PenelopeComptonModel, and (2) experimental comparison with respect to Compton electron kinetic energy spectra obtained from the Compton scattering of 662 key photons off the K-shell of gold. Both studies illustrate that the Monash University Compton scattering model, and in turn G4LowEPComptonModel, is a viable replacement for the majority of computational models that have been adapted from Ribberfors' work. It was also shown that the Monash University Compton scattering model is able to reproduce the Compton scattering triply differential cross-section Compton electron kinetic energy spectra of 662 keV photons K-shell scattering off of gold to within experimental uncertainty.  
  Address [Brown, J. M. C.; Paganin, D. M.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia, Email: jeremy.brown@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-583x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000343390400012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1973  
Permanent link to this record
 

 
Author ATLAS Collaboration (Adragna, P. et al); Castelo, J.; Castillo Gimenez, V.; Cuenca, C.; Ferrer, A.; Fullana, E.; Gonzalez, V.; Higon-Rodriguez, E.; Poveda, J.; Ruiz, A.; Salvachua, B.; Sanchis, E.; Solans, C.; Torres, J.; Valero, A.; Valls Ferrer, J.A. doi  openurl
  Title Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS Tile calorimeter Type Journal Article
  Year 2010 Publication (down) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 615 Issue 2 Pages 158-181  
  Keywords Calorimeter; Test-beam; ATLAS; Monte Carlo simulation; GEANT4; Hadronic shower development; Pion-proton response; Longitudinal shower profile for hadrons  
  Abstract The response of pions and protons in the energy range of 20-180 GeV, produced at CERN's SPS H8 test-beam line in the ATLAS iron-scintillator Tile hadron calorimeter, has been measured. The test-beam configuration allowed the measurement of the longitudinal shower development for pions and protons up to 20 nuclear interaction lengths. It was found that pions penetrate deeper in the calorimeter than protons. However, protons induce showers that are wider laterally to the direction of the impinging particle. Including the measured total energy response, the pion-to-proton energy ratio and the resolution, all observations are consistent with a higher electromagnetic energy fraction in pion-induced showers. The data are compared with GEANT4 simulations using several hadronic physics lists. The measured longitudinal shower profiles are described by an analytical shower parametrization within an accuracy of 5-10%. The amount of energy leaking out behind the calorimeter is determined and parametrized as a function of the beam energy and the calorimeter depth. This allows for a leakage correction of test-beam results in the standard projective geometry.  
  Address [Hakobyan, H.; Simonyan, M.] Yerevan Phys Inst, Yerevan 375036, Armenia, Email: Margar.Simonyan@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276299900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 252  
Permanent link to this record
 

 
Author Jaworski, G.; Palacz, M.; Nyberg, J.; de Angelis, G.; de France, G.; Di Nitto, A.; Egea, F.J.; Erduran, M.N.; Erturk, S.; Farnea, E.; Gadea, A.; Gonzalez, V.; Gottardo, A.; Huyuk, T.; Kownacki, J.; Pipidis, A.; Roeder, B.; Soderstrom, P.A.; Sanchis, E.; Tarnowski, R.; Triossi, A.; Wadsworth, R.; Valiente-Dobon, J.J. doi  openurl
  Title Monte Carlo simulation of a single detector unit for the neutron detector array NEDA Type Journal Article
  Year 2012 Publication (down) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 673 Issue Pages 64-72  
  Keywords Monte Carlo simulation; BC501; BC501A; BC537; Liquid scintillator; Neutron detector; Geant4; NEDA  
  Abstract A study of the dimensions and performance of a single detector of the future neutron detector array NEDA was performed by means of Monte Carlo simulations, using GEANT4. Two different liquid scintillators were evaluated: the hydrogen based BC501A and the deuterated BC537. The efficiency and the probability that one neutron will trigger a signal in more than one detector were investigated as a function of the detector size. The simulations were validated comparing the results to experimental measurements performed with two existing neutron detectors, with different geometries, based on the liquid scintillator BC501.  
  Address [Jaworski, G.; Palacz, M.; Kownacki, J.; Tarnowski, R.] Univ Warsaw, Heavy Ion Lab, PL-02093 Warsaw, Poland, Email: palacz@slcj.uw.edu.pl  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301813500009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 944  
Permanent link to this record
 

 
Author Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Tain, J.L.; Algora, A.; Berthoumieux, E.; Colonna, N.; Domingo-Pardo, C.; Gonzalez-Romero, E.; Heil, M.; Jordan, D.; Kappeler, F.; Lampoudis, C.; Martinez, T.; Massimi, C.; Plag, R. doi  openurl
  Title Monte Carlo simulation of the n_TOF Total Absorption Calorimeter Type Journal Article
  Year 2012 Publication (down) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 671 Issue Pages 108-117  
  Keywords Monte Carlo simulation; Geant4; Neutron cross-sections; Time-of-flight; Neutron capture  
  Abstract The n_TOF Total Absorption Calorimeter (TAC) is a 4 pi BaF2 segmented detector used at CERN for measuring neutron capture cross-sections of importance for the design of advanced nuclear reactors. This work presents the simulation code that has been developed in GEANT4 for the accurate determination of the detection efficiency of the TAC for neutron capture events. The code allows to calculate the efficiency of the TAC for every neutron capture state, as a function of energy, crystal multiplicity, and counting rate. The code includes all instrumental effects such as the single crystal detection threshold and energy resolution, finite size of the coincidence time window, and signal pile-up. The results from the simulation have been validated with experimental data for a large set of electromagnetic de-excitation patterns: beta-decay of well known calibration sources, neutron capture reactions in light nuclei with well known level schemes like Ti-nat, reference samples used in (n,gamma) measurements like Au-197 and experimental data from an actinide sample like Pu-240. The systematic uncertainty in the determination of the detection efficiency has been estimated for all the cases. As a representative example, the accuracy reached for the case of Au-197(n,gamma) ranges between 0.5% and 2%, depending on the experimental and analysis conditions. Such a value matches the high accuracy required for the nuclear cross-section data needed in advanced reactor design.  
  Address [Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Gonzalez-Romero, E.; Martinez, T.] CIEMAT, Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain, Email: carlos.guerrero@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301474600013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 973  
Permanent link to this record
 

 
Author n_TOF Collaboration (Zugec, P. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. url  doi
openurl 
  Title GEANT4 simulation of the neutron background of the C6D6 set-up for capture studies at n_TOF Type Journal Article
  Year 2014 Publication (down) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 760 Issue Pages 57-67  
  Keywords GEANT4 simulations; Neutron time of flight; Neutron background; N_TOF; Neutron capture  
  Abstract The neutron sensitivity of the Cr6D6 detector setup used at nTOF facility for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire nTOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has been implemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with a(nat)-C sample, showing an excellent agreement above 1 keV. At lower energies, an additional component in the measured C-nat yield has been discovered, which prevents the use of C-nat data for neutron background estimates at neutron energies below a few hundred eV. The origin and time structure of the neutron background have been derived from the simulations. Examples of the neutron background for two different samples are demonstrating the important role of accurate simulations of the neutron background in capture cross-section measurements.  
  Address [Zugec, P.; Bosnar, D.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia, Email: pzugec@phy.hr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000338350500008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1828  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva