|   | 
Details
   web
Records
Author Diaz-Morcillo, A.; Barcelo, J.M.G.; Guerrero, A.J.L.; Navarro, P.; Gimeno, B.; Cuneáis, S.A.; Melcon, A.A.; Cogollos, C.; Calatroni, S.; Dobrich, B.; Gallego-Puyol, J.D.; Golm, J.; Irastorza, I.G.; Malbrunot, C.; Miralda-Escude, J.; Garay, C.P.; Redondo, J.; Wuensch, W.
Title Design of New Resonant Haloscopes in the Search for the Dark Matter Axion: A Review of the First Steps in the RADES Collaboration Type Journal Article
Year 2022 Publication (down) Universe Abbreviated Journal Universe
Volume 8 Issue 1 Pages 5 - 22pp
Keywords axions; dark matter detectors; haloscopes; resonant cavities
Abstract With the increasing interest in dark matter axion detection through haloscopes, in which different international groups are currently involved, the RADES group was established in 2016 with the goal of developing very sensitive detection systems to be operated in dipole magnets. This review deals with the work developed by this collaboration during its first five years: from the first designs-based on the multi-cavity concept, aiming to increase the haloscope volume, and thereby improve sensitivity-to their evolution, data acquisition design, and finally, the first experimental run. Moreover, the envisaged work within RADES for both dipole and solenoid magnets in the short and medium term is also presented.
Address [Diaz-Morcillo, Alejandro; Garcia Barcelo, Jose Maria; Lozano Guerrero, Antonio Jose; Navarro, Pablo; Alvarez Melcon, Alejandro] Univ Politecn Cartagena, Dept Informat & Commun Technol, Cartagena 30202, Spain, Email: alejandro.diaz@upct.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000746970600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5086
Permanent link to this record
 

 
Author Perez-Perez, J.; Amare, J.C.; Bandac, I.C.; Bayo, A.; Borjabad-Sanchez, S.; Calvo-Mozota, J.M.; Cid-Barrio, L.; Hernandez-Antolin, R.; Hernandez-Molinero, B.; Novella, P.; Pelczar, K.; Pena-Garay, C.; Romeo, B.; Ortiz de Solorzano, A.; Sorel, M.; Torrent, J.; Uson, A.; Wojna-Pelczar, A.; Zuzel, G.
Title Radon Mitigation Applications at the Laboratorio Subterráneo de Canfranc (LSC) Type Journal Article
Year 2022 Publication (down) Universe Abbreviated Journal Universe
Volume 8 Issue 2 Pages 112 - 20pp
Keywords radon; neutrinos; HPGe-detector; LSC
Abstract The Laboratorio Subterraneo de Canfranc (LSC) is the Spanish national hub for low radioactivity techniques and the associated scientific and technological applications. The concentration of the airborne radon is a major component of the radioactive budget in the neighborhood of the detectors. The LSC hosts a Radon Abatement System, which delivers a radon suppressed air with 1.1 & PLUSMN;0.2 mBq/m(3) of Rn-222. The radon content in the air is continuously monitored with an Electrostatic Radon Monitor. Measurements with the double beta decay demonstrators NEXT-NEW and CROSS and the gamma HPGe detectors show the important reduction of the radioactive background due to the purified air in the vicinity of the detectors. We also discuss the use of this facility in the LSC current program which includes NEXT-100, low background biology experiments and radiopure copper electroformation equipment placed in the radon-free clean room.
Address [Perez-Perez, Javier; Bandac, Iulian Catalin; Bayo, Alberto; Borjabad-Sanchez, Silvia; Calvo-Mozota, Jose Maria; Cid-Barrio, Laura; Hernandez-Antolin, Rebecca; Hernandez-Molinero, Beatriz; Pena-Garay, Carlos; Romeo, Beatriz] Lab Subterraneo Canfranc LSC, Canfranc Estn 22880, Spain, Email: javier.perez.perez@uj.edu.pl;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000762509500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5143
Permanent link to this record
 

 
Author Massimi, C.; Cristallo, S.; Domingo-Pardo, C.; Lederer-Woods, C.
Title n_TOF: Measurements of Key Reactions of Interest to AGB Stars Type Journal Article
Year 2022 Publication (down) Universe Abbreviated Journal Universe
Volume 8 Issue 2 Pages 100 - 19pp
Keywords s process; MACS; time of flight
Abstract In the last 20 years, the neutron time-of-flight facility nTOF at CERN has been providing relevant data for the astrophysical slow neutron capture process (s process). At nTOF, neutron-induced radiative capture (n,gamma) as well as (n,p) and (n,alpha) reaction cross sections are measured as a function of energy, using the time-of-flight method. Improved detection systems, innovative ideas and collaborations with other neutron facilities have lead to a considerable contribution of the n_TOF collaboration to studying the s process in asymptotic giant branch stars. Results have been reported for stable and radioactive samples, i.e.,Mg- 24,Mg-25,Mg-26, Al-26, S-33,Fe- 54,Fe-57, Ni-58,Ni-59,Ni-62,Ni-63, Ge-70,Ge-72,Ge-73, Zr-90,Zr-91,Zr-92,Zr-93,Zr-94,Zr-96, La-139, Ce-140, Pm-147, Sm-151,Gd- 154,Gd-155,Gd-157, Tm-171, Os-186,Os-187,Os-188, Au-197, Tl-203,Tl-204,Pb- 204,Pb-206,Pb-207 and Bi-209 isotopes, while others are being studied or planned to be studied in the near future. In this contribution, we present an overview of the most successful achievements, and an outlook of future challenging measurements, including ongoing detection system developments.
Address [Massimi, Cristian] Univ Bologna, Dept Phys & Astron, I-40127 Bologna, Italy, Email: cristian.massimi@unibo.it;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000762514400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5144
Permanent link to this record
 

 
Author Hernandez-Rey, J.J.; Ardid, M.; Bou Cabo, M.; Calvo, D.; Diaz, A.F.; Gozzini, S.R.; Martinez-Mora, J.A.; Navas, S.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J.
Title Science with Neutrino Telescopes in Spain Type Journal Article
Year 2022 Publication (down) Universe Abbreviated Journal Universe
Volume 8 Issue 2 Pages 89 - 25pp
Keywords neutrino; neutrino telescopes; neutrino astrophysics; neutrino properties; sea science
Abstract The primary scientific goal of neutrino telescopes is the detection and study of cosmic neutrino signals. However, the range of physics topics that these instruments can tackle is exceedingly wide and diverse. Neutrinos coming from outside the Earth, in association with other messengers, can contribute to clarify the question of the mechanisms that power the astrophysical accelerators which are known to exist from the observation of high-energy cosmic and gamma rays. Cosmic neutrinos can also be used to bring relevant information about the nature of dark matter, to study the intrinsic properties of neutrinos and to look for physics beyond the Standard Model. Likewise, atmospheric neutrinos can be used to study an ample variety of particle physics issues, such as neutrino oscillation phenomena, the determination of the neutrino mass ordering, non-standard neutrino interactions, neutrino decays and a diversity of other physics topics. In this article, we review a selected number of these topics, chosen on the basis of their scientific relevance and the involvement in their study of the Spanish physics community working in the KM3NeT and ANTARES neutrino telescopes.
Address [Hernandez-Rey, Juan Jose; Calvo, David; Gozzini, Sara Rebecca; Real, Diego; Greus, Francisco Salesa; Losa, Agustin Sanchez; Zornoza, Juan de Dios; Zuniga, Juan] Univ Valencia, IFIC Inst Fis Corpuscular, C Catedratico Jose Beltran 2, Paterna 46980, Spain, Email: juan.j.hernandez@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000762321400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5145
Permanent link to this record
 

 
Author Capozzi, F.; Saviano, N.
Title Neutrino Flavor Conversions in High-Density Astrophysical and Cosmological Environments Type Journal Article
Year 2022 Publication (down) Universe Abbreviated Journal Universe
Volume 8 Issue 2 Pages 94 - 23pp
Keywords astrophysical neutrinos; neutrino oscillations; supernovae; neutron star mergers; early Universe; sterile neutrinos
Abstract Despite being a well understood phenomenon in the context of current terrestrial experiments, neutrino flavor conversions in dense astrophysical environments probably represent one of the most challenging open problems in neutrino physics. Apart from being theoretically interesting, such a problem has several phenomenological implications in cosmology and in astrophysics, including the primordial nucleosynthesis of light elements abundance and other cosmological observables, nucleosynthesis of heavy nuclei, and the explosion of massive stars. In this review, we briefly summarize the state of the art on this topic, focusing on three environments: early Universe, core-collapse supernovae, and compact binary mergers.
Address [Capozzi, Francesco] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest, Paterna 46980, Spain, Email: fcapozzi@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000762069300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5146
Permanent link to this record
 

 
Author Sanchis-Lozano, M.A.
Title Stringy Signals from Large-Angle Correlations in the Cosmic Microwave Background? Type Journal Article
Year 2022 Publication (down) Universe Abbreviated Journal Universe
Volume 8 Issue 8 Pages 396 - 13pp
Keywords cosmic microwave background; angular correlations; inflation; string theory
Abstract We interpret the lack of large-angle temperature correlations and the even-odd parity imbalance observed in the cosmic microwave background (CMB) by COBE, WMAP and Planck satellite missions as a possible stringy signal ultimately stemming from a composite inflaton field (e.g., a fermionic condensate). Based on causality arguments and a Fourier analysis of the angular two-point correlation function, two infrared cutoffs k(min)(even,odd) (satisfying k(min)(even) similar or equal to 2k(min)(odd)) are introduced to the CMB power spectrum associated, respectively, with periodic and antiperiodic boundary conditions of the fermionic constituents (echoing the Neveu-Schwarz-Ramond model in superstring theory), without resorting to any particular model.
Address [Sanchis-Lozano, Miguel-Angel] Univ Valencia, Dept Theoret Phys, Doctor Moliner 50, Burjassot 46011, Spain, Email: miguel.angel.sanchis@ific.uv.es
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000845107300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5344
Permanent link to this record
 

 
Author Navarro-Salas, J.; Pla, S.
Title Particle Creation and the Schwinger Model Type Journal Article
Year 2022 Publication (down) Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 14 Issue 11 Pages 2435 - 9pp
Keywords Schwinger model; semiclassical theory; particle creation
Abstract We study the particle creation process in the Schwinger model coupled with an external classical source. One can approach the problem by taking advantage of the fact that the full quantized model is solvable and equivalent to a (massive) gauge field with a non-local effective action. Alternatively, one can also face the problem by following the standard semiclassical route. This means quantizing the massless Dirac field and considering the electromagnetic field as a classical background. We evaluate the energy created by a generic, homogeneous, and time-dependent source. The results match exactly in both approaches. This proves in a very direct and economical way the validity of the semiclassical approach for the (massless) Schwinger model, in agreement with a previous analysis based on the linear response equation. Our discussion suggests that a similar analysis for the massive Schwinger model could be used as a non-trivial laboratory to confront a fully quantized solvable model with its semiclassical approximation, therefore mimicking the long-standing confrontation of quantum gravity with quantum field theory in curved spacetime.
Address [Navarro-Salas, Jose] Univ Valencia, Ctr Mixto Univ Valencia CSIC, Fac Fis, Dept Fis Teor & IFIC, Burjassot 46100, Valencia, Spain, Email: jnavarro@ific.uv.es
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000895122100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5432
Permanent link to this record
 

 
Author Ramirez-Uribe, S.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R.
Title From Five-Loop Scattering Amplitudes to Open Trees with the Loop-Tree Duality Type Journal Article
Year 2022 Publication (down) Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 14 Issue 12 Pages 2571 - 14pp
Keywords perturbative QFT; higher-order calculations; multiloop Feynman integrals
Abstract Characterizing multiloop topologies is an important step towards developing novel methods at high perturbative orders in quantum field theory. In this article, we exploit the Loop-Tree Duality (LTD) formalism to analyse multiloop topologies that appear for the first time at five loops. Explicitly, we open the loops into connected trees and group them according to their topological properties. Then, we identify a kernel generator, the so-called N7MLT universal topology, that allows us to describe any scattering amplitude of up to five loops. Furthermore, we provide factorization and recursion relations that enable us to write these multiloop topologies in terms of simpler subtopologies, including several subsets of Feynman diagrams with an arbitrary number of loops. Our approach takes advantage of many symmetries present in the graphical description of the original fundamental five-loop topologies. The results obtained in this article might shed light into a more efficient determination of higher-order corrections to the running couplings, which are crucial in the current and future precision physics program.
Address [Ramirez-Uribe, Selomit; Rodrigo, German] Univ Valencia, Inst Fis Corpuscular, Consejo Super Invest Cient, Parc Cient, E-46980 Paterna, Spain, Email: roger@uas.edu.mx
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000904374000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5450
Permanent link to this record
 

 
Author SCiMMA and SNEWS Collaborations (Baxter, A.L. et al); Colomer, M.
Title Collaborative experience between scientific software projects using Agile Scrum development Type Journal Article
Year 2022 Publication (down) Software-Practice & Experience Abbreviated Journal Softw.-Pract. Exp.
Volume 52 Issue Pages 2077-2096
Keywords Agile; cyberinfrastructure; multimessenger astrophysics; scientific computing; software development
Abstract Developing sustainable software for the scientific community requires expertise in software engineering and domain science. This can be challenging due to the unique needs of scientific software, the insufficient resources for software engineering practices in the scientific community, and the complexity of developing for evolving scientific contexts. While open-source software can partially address these concerns, it can introduce complicating dependencies and delay development. These issues can be reduced if scientists and software developers collaborate. We present a case study wherein scientists from the SuperNova Early Warning System collaborated with software developers from the Scalable Cyberinfrastructure for Multi-Messenger Astrophysics project. The collaboration addressed the difficulties of open-source software development, but presented additional risks to each team. For the scientists, there was a concern of relying on external systems and lacking control in the development process. For the developers, there was a risk in supporting a user-group while maintaining core development. These issues were mitigated by creating a second Agile Scrum framework in parallel with the developers' ongoing Agile Scrum process. This Agile collaboration promoted communication, ensured that the scientists had an active role in development, and allowed the developers to evaluate and implement the scientists' software requirements. The collaboration provided benefits for each group: the scientists actuated their development by using an existing platform, and the developers utilized the scientists' use-case to improve their systems. This case study suggests that scientists and software developers can avoid scientific computing issues by collaborating and that Agile Scrum methods can address emergent concerns.
Address [Baxter, Amanda L.; Clark, Michael; Kopec, Abigail; Lang, Rafael F.; Li, Shengchao; Linvill, Mark W.; Milisavljevic, Danny; Weil, Kathryn E.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA, Email: adepoian@purdue.edu;
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-0644 ISBN Medium
Area Expedition Conference
Notes WOS:000830363800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5305
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Diaz, A.; Salesa Greus, F.; Sanchez Losa, A.
Title A Narrow Optical Pulse Emitter Based on LED: NOPELED Type Journal Article
Year 2022 Publication (down) Sensors Abbreviated Journal Sensors
Volume 22 Issue 19 Pages 7683 - 15pp
Keywords short optical pulse; optical instrumentation
Abstract Light sources emitting short pulses are needed in many particle physics experiments using optical sensors as they can replicate the light produced by the particles being detected and are also an important calibration and test element. This work presents NOPELED, a light source based on LEDs emitting short optical pulses with typical rise times of less than 3 ns and Full Width at Half Maximum lower than 7 ns. The emission wavelength depends on the model of LED used. Several LED models have been characterized in the range from 405 to 532 nm, although NOPELED can work with LED emitting wavelengths outside of that region. While the wavelength is fixed for a given LED model, the intensity and the frequency of the optical pulse can be controlled. NOPELED, which also has low cost and simple operation, can be operated remotely, making it appropriate for either different physics experiments needing in-place light sources such as astrophysical neutrino detectors using photo-multipliers or positron emission tomography devices using scintillation counters, or, beyond physics, applications needing short pulses of light such as protein fluorescence or chemodetection of heavy metals.
Address [Real, Diego; Calvo, David; Salesa Greus, Francisco; Sanchez Losa, Agustin] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000867935300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5381
Permanent link to this record