toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bonilla, C.; Romao, J.C.; Valle, J.W.F. url  doi
openurl 
  Title Neutrino mass and invisible Higgs decays at the LHC Type Journal Article
  Year 2015 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 91 Issue 11 Pages 113015 - 7pp  
  Keywords  
  Abstract The discovery of the Higgs boson suggests that neutrinos also get their mass from spontaneous symmetry breaking. In the simplest ungauged lepton-number scheme, the Standard Model Higgs now has two other partners: a massive CP-even scalar, and the massless Nambu-Goldstone boson, called the Majoron. For weak-scale breaking of lepton number the invisible decays of the CP-even Higgs bosons to the Majoron lead to potentially copious sources of events with large missing energy. Using LHC results, we study how the constraints on invisible decays of the Higgs boson restrict the relevant parameters, substantially extending those previously derived from LEP and potentially shedding light on the scale of spontaneous lepton-number violation.  
  Address [Bonilla, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000356928900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2285  
Permanent link to this record
 

 
Author Kosmas, T.S.; Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Probing neutrino magnetic moments at the Spallation Neutron Source facility Type Journal Article
  Year 2015 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue 1 Pages 013011 - 12pp  
  Keywords  
  Abstract Majorana neutrino electromagnetic properties are studied through neutral current coherent neutrinonucleus scattering. We focus on the potential of the recently planned COHERENT experiment at the Spallation Neutron Source to probe muon-neutrino magnetic moments. The resulting sensitivities are determined on the basis of chi(2) analysis employing realistic nuclear structure calculations in the context of the quasiparticle random phase approximation. We find that they can improve existing limits by half an order of magnitude. In addition, we show that these facilities allow for standard model precision tests in the low energy regime, with a competitive determination of the weak mixing angle. Finally, they also offer the capability to probe other electromagnetic neutrino properties, such as the neutrino charge radius. We illustrate our results for various choices of experimental setup and target material.  
  Address [Kosmas, T. S.; Papoulias, D. K.] Univ Ioannina, Theoret Phys Sect, GR-45110 Ioannina, Greece, Email: hkosmas@uoi.gr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000358256700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2311  
Permanent link to this record
 

 
Author Boucenna, S.M.; Valle, J.W.F.; Vicente, A. url  doi
openurl 
  Title Predicting charged lepton flavor violation from 3-3-1 gauge symmetry Type Journal Article
  Year 2015 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue 5 Pages 053001 - 7pp  
  Keywords  
  Abstract The simplest realization of the inverse seesaw mechanism in a SU(3)(C) circle times SU(3)(L) circle times U(1)(X) gauge theory offers striking flavor correlations between rare charged lepton flavor violating decays and the measured neutrino oscillations parameters. The predictions follow from the gauge structure itself without the need for any flavor symmetry. Such tight complementarity between charged lepton flavor violation and neutrino oscillations renders the scenario strictly testable.  
  Address [Boucenna, Sofiane M.; Valle, Jose W. F.; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: boucenna@lnf.infn.it;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000360885800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2386  
Permanent link to this record
 

 
Author Escrihuela, F.J.; Forero, D.V.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title On the description of nonunitary neutrino mixing Type Journal Article
  Year 2015 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue 5 Pages 053009 - 16pp  
  Keywords  
  Abstract Neutrino oscillations are well established and the relevant parameters determined with good precision, except for the CP phase, in terms of a unitary lepton mixing matrix. Seesaw extensions of the Standard Model predict unitarity deviations due to the admixture of heavy isosinglet neutrinos. We provide a complete description of the unitarity and universality deviations in the light-neutrino sector. Neutrino oscillation experiments involving electron or muon neutrinos and antineutrinos are fully described in terms of just three new real parameters and a new CP phase, in addition to the ones describing oscillations with unitary mixing. Using this formalism we describe the implications of nonunitarity for neutrino oscillations and summarize the model-independent constraints on heavy-neutrino couplings that arise from current experiments.  
  Address [Escrihuela, F. J.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46980 Valencia, Spain, Email: franesfe@alumni.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000361303200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2389  
Permanent link to this record
 

 
Author Bonilla, C.; Fonseca, R.M.; Valle, J.W.F. url  doi
openurl 
  Title Consistency of the triplet seesaw model revisited Type Journal Article
  Year 2015 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue 7 Pages 075028 - 7pp  
  Keywords  
  Abstract Adding a scalar triplet to the Standard Model is one of the simplest ways of giving mass to neutrinos, providing at the same time a mechanism to stabilize the theory's vacuum. In this paper, we revisit these aspects of the type-II seesaw model pointing out that the bounded-from-below conditions for the scalar potential in use in the literature are not correct. We discuss some scenarios where the correction can be significant and sketch the typical scalar boson profile expected by consistency.  
  Address [Bonilla, Cesar; Fonseca, Renato M.; Valle, J. W. F.] CSIC Univ Valencia, AHEP Grp, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: cbonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000363237400013 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2423  
Permanent link to this record
 

 
Author Bonilla, C.; Nebot, M.; Valle, J.W.F.; Srivastava, R. url  doi
openurl 
  Title Flavor physics scenario for the 750 GeV diphoton anomaly Type Journal Article
  Year 2016 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 7 Pages 073009 - 5pp  
  Keywords  
  Abstract A simple variant of a realistic flavor symmetry scheme for fermion masses and mixings provides a possible interpretation of the diphoton anomaly as an electroweak singlet “flavon.” The existence of TeV scale vectorlike T-quarks required to provide adequate values for Cabibbo-Kobayashi-Maskawa (CKM) parameters can also naturally account for the diphoton anomaly. Correlations between V-ub and V-cb with the vectorlike T-quark mass can be predicted. Should the diphoton anomaly survive in a future run, our proposed interpretation can also be tested in upcoming B and LHC studies.  
  Address [Bonilla, Cesar; Nebot, Miguel; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient Paterna C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000374548300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2669  
Permanent link to this record
 

 
Author Chen, P.; Ding, G.J.; Gonzalez-Canales, F.; Valle, J.W.F. url  doi
openurl 
  Title Classifying CP transformations according to their texture zeros: Theory and implications Type Journal Article
  Year 2016 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 3 Pages 033002 - 26pp  
  Keywords  
  Abstract We provide a classification of generalized CP symmetries preserved by the neutrino mass matrix according to the number of zero entries in the associated transformation matrix. We determine the corresponding constrained form of the lepton mixing matrix, characterized by correlations between the mixing angles and the CP violating phases. We compare with the corresponding restrictions from current neutrino oscillation global fits and show that, in some cases, the Dirac CP phase characterizing oscillations is highly constrained. Implications for current and upcoming long baseline neutrino oscillation experiments T2K, NO nu A, and DUNE, as well as neutrinoless double beta decay experiments are discussed. We also study the cosmological implications of such schemes for leptogenesis.  
  Address [Chen, Peng; Ding, Gui-Jun] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China, Email: pche@mail.ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000380961000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2771  
Permanent link to this record
 

 
Author Reig, M.; Valle, J.W.F.; Vaquera-Araujo, C.A. url  doi
openurl 
  Title Realistic SU(3)(c) x SU(3)(L) x U(1)(X) model with a type II Dirac neutrino seesaw mechanism Type Journal Article
  Year 2016 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 3 Pages 033012 - 4pp  
  Keywords  
  Abstract Here we propose a realistic SU(3)(c) circle times SU(3)(L) circle times U(1)(X) electroweak gauge model with enlarged Higgs sector. The scheme allows for the natural implementation of a type II seesaw mechanism for Dirac neutrinos, while charged lepton and quark masses are reproduced in a natural way thanks to the presence of new scalars. The new SU(3)(c) circle times SU(3)(L) circle times U(1)(X) energy scale characterizing neutrino mass generation could be accessible to the current LHC experiments.  
  Address [Reig, Mario; Valle, Jose W. F.; Vaquera-Araujo, C. A.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mareiglo@alumni.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000383046500003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2892  
Permanent link to this record
 

 
Author Ge, S.F.; Pasquini, P.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Measuring the leptonic CP phase in neutrino oscillations with nonunitary mixing Type Journal Article
  Year 2017 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 3 Pages 033005 - 14pp  
  Keywords  
  Abstract Non-unitary neutrino mixing implies an extra CP violating phase that can fake the leptonic Dirac CP phase delta(CP) of the simplest three-neutrino mixing benchmark scheme. This would hinder the possibility of probing for CP violation in accelerator-type experiments. We take T2K and T2HK as examples to demonstrate the degeneracy between the “standard” (or “unitary”) and “nonunitary” CP phases. We find, under the assumption of nonunitary mixing, that their CP sensitivities severely deteriorate. Fortunately, the TNT2K proposal of supplementing T2(H)K with a μDAR source for better measurement of delta(CP) can partially break the CP degeneracy by probing both cos delta(CP) and sin delta(CP) dependences in the wide spectrum of the μDAR flux. We also show that the further addition of a near detector to the μDAR setup can eliminate the degeneracy completely.  
  Address [Ge, Shao-Feng] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany, Email: gesf02@gmail.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000394092900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2988  
Permanent link to this record
 

 
Author Pasquini, P.; Centelles Chulia, S.; Valle, J.W.F. url  doi
openurl 
  Title Neutrino oscillations from warped flavor symmetry: Predictions for long baseline experiments T2K, NOvA, and DUNE Type Journal Article
  Year 2017 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 9 Pages 095030 - 8pp  
  Keywords  
  Abstract Here we study the pattern of neutrino oscillations emerging from a previously proposed warped standard model construction incorporating Delta(27) flavor symmetry [J. High Energy Phys. 01 (2016) 007]. In addition to a complete description of fermion masses, the model predicts the lepton mixing matrix in terms of two parameters. The good measurement of. theta(13) makes these two parameters tightly correlated, leading to an approximate one-parameter description of neutrino oscillations. We find secondary minima for the CP phase absent in the general unconstrained oscillation scenario and determine the fourfold degenerate sharp correlation between the physical CP phase delta(CP) and the atmospheric mixing angle. theta(23). This implies that maximal. theta(23) correlates with maximal leptonic CP violation. We perform a realistic estimate of the total neutrino and antineutrino event numbers expected at long baseline oscillation experiments T2K, NOvA, and the upcoming DUNE proposal. We show how an improved knowledge of the CP phase will probe the model in a significant way.  
  Address [Pasquini, Pedro] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: pasquini@ifi.unicamp.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402471800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3155  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva