|   | 
Details
   web
Records
Author Piriz, G.H.; Gonzalez-Sprinberg, G.A.; Ballester, F.; Vijande, J.
Title Dosimetry of Large Field Valencia applicators for Cobalt-60-based brachytherapy Type Journal Article
Year 2024 Publication (up) Medical Physics Abbreviated Journal Med. Phys.
Volume Issue Pages 5pp
Keywords dosimetry; Monte Carlo; skin brachytherapy; Valencia applicators
Abstract BackgroundNon-melanoma skin cancer is one of the most common types of cancer and one of the main approaches is brachytherapy. For small lesions, the treatment of this cancer with brachytherapy can be done with two commercial applicators, one of these is the Large Field Valencia Applicators (LFVA).PurposeThe aim of this study is to test the capabilities of the LFVA to use clinically 60Co sources instead of the 192Ir ones. This study was designed for the same dwell positions and weights for both sources.MethodsThe Penelope Monte Carlo code was used to evaluate dose distribution in a water phantom when a 60Co source is considered. The LFVA design and the optimized dwell weights reported for the case of 192Ir are maintained with the only exception of the dwell weight of the central position, that was increased. 2D dose distributions, field flatness, symmetry and the leakage dose distribution around the applicator were calculated.ResultsWhen comparing the dose distributions of both sources, field flatness and symmetry remain unchanged. The only evident difference is an increase of the penumbra regions for all depths when using the 60Co source. Regarding leakage, the maximum dose within the air volume surrounding the applicator is in the order of 20% of the prescription dose for the 60Co source, but it decreases to less than 5% at about 1 cm distance.ConclusionsFlatness and symmetry remains unaltered as compared with 192Ir sources, while an increase in leakage has been observed. This proves the feasibility of using the LFVA in a larger range of clinical applications.
Address [Piriz, Gustavo H.; Gonzalez-Sprinberg, Gabriel A.] Univ Republica, Fac Sci, Med Phys Unit, Montevideo, Uruguay, Email: ghpiriz@gmail.com
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition Conference
Notes WOS:001187737100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6011
Permanent link to this record
 

 
Author Angles-Castillo, A.; Perez, A.; Roldan, E.
Title Bright and dark solitons in a photonic nonlinear quantum walk: lessons from the continuum Type Journal Article
Year 2024 Publication (up) New Journal of Physics Abbreviated Journal New J. Phys.
Volume 26 Issue 2 Pages 023004 - 16pp
Keywords quantum walks; soliton; non-linear optics
Abstract We propose a nonlinear quantum walk model inspired in a photonic implementation in which the polarization state of the light field plays the role of the coin-qubit. In particular, we take profit of the nonlinear polarization rotation occurring in optical media with Kerr nonlinearity, which allows to implement a nonlinear coin operator, one that depends on the state of the coin-qubit. We consider the space-time continuum limit of the evolution equation, which takes the form of a nonlinear Dirac equation. The analysis of this continuum limit allows us to gain some insight into the existence of different solitonic structures, such as bright and dark solitons. We illustrate several properties of these solitons with numerical calculations, including the effect on them of an additional phase simulating an external electric field.
Address [Angles-Castillo, Andreu; Perez, Armando] Univ Valencia, Dept Fis Teor & IFIC, CSIC, Burjassot 46100, Valencia, Spain, Email: andreu.angles-castillo@uv.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:001156767400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5929
Permanent link to this record
 

 
Author Miyagawa, P.S. et al; Bernabeu, P.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Analysis of the results from Quality Control tests performed on ATLAS18 Strip Sensors during on-going production Type Journal Article
Year 2024 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1064 Issue Pages 169457 - 9pp
Keywords HL-LHC; ATLAS; ITk; Strip sensors
Abstract The ATLAS experiment will replace its existing Inner Detector with the new all -silicon Inner Tracker (ITk) to cope with the operating conditions of the forthcoming high -luminosity phase of the LHC (HL-LHC). The outer regions of the ITk will be instrumented with similar to 18000 ATLAS18 strip sensors fabricated by Hamamatsu Photonics K.K. (HPK). With the launch of full-scale sensor production in 2021, the ITk strip sensor community has undertaken quality control (QC) testing of these sensors to ensure compliance with mechanical and electrical specifications agreed with HPK. The testing is conducted at seven QC sites on each of the monthly deliveries of similar to 500 sensors. This contribution will give an overview of the QC procedures and analysis; the tests most likely to determine pass/fail for a sensor are IV, long-term leakage current stability, full strip test and visual inspection. The contribution will then present trends in the results and properties following completion of similar to 60% of production testing. It will also mention challenges overcome through collaborative efforts with HPK during the early phases of production. With less than 5% of sensors rejected by QC testing, the overall production quality has been very good.
Address [Miyagawa, P. S.; Beck, G. A.; Bevan, A. J.; Chen, Z.; Dawson, I.; Zenz, S. C.] Queen Mary Univ London, Particle Phys Res Ctr, GO Jones Bldg, Mile End Rd, London E14NS, England, Email: paul.miyagawa@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001249611300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6158
Permanent link to this record
 

 
Author Bach, E. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Analysis of the quality assurance results from the initial part of production of the ATLAS18 ITK strip sensors Type Journal Article
Year 2024 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1064 Issue Pages 169435 - 8pp
Keywords Silicon strip sensors; Parameter analysis
Abstract The production of strip sensors for the ATLAS Inner Tracker (ITk) started in 2021. Since then, a Quality Assurance (QA) program has been carried out continuously, by using specific test structures, in parallel to the Quality Control (QC) inspection of the sensors. The QA program consists of monitoring sensor-specific characteristics and the technological process variability, before and after the irradiation with gammas, neutrons, and protons. After two years, half of the full production volume has been reached and we present an analysis of the parameters measured as part of the QA process. The main devices used for QA purposes are miniature strip sensors, monitor diodes, and the ATLAS test chip, which contains several test structures. Such devices are tested by several sites across the collaboration depending on the type of samples (non-irradiated components or irradiated with protons, neutrons, or gammas). The parameters extracted from the tests are then uploaded to a database and analyzed by Python scripts. These parameters are mainly examined through histograms and timeevolution plots to obtain parameter distributions, production trends, and meaningful parameter-to-parameter correlations. The purpose of this analysis is to identify possible deviations in the fabrication or the sensor quality, changes in the behavior of the test equipment at different test sites, or possible variability in the irradiation processes. The conclusions extracted from the QA program have allowed test optimization, establishment of control limits for the parameters, and a better understanding of device properties and fabrication trends. In addition, any abnormal results prompt immediate feedback to a vendor.
Address [Bach, E.; Bhardwaj, A.; Crick, B.; Ullan, M.] CSIC, Inst Microelect Barcelona IMB CNM, Campus UAB Bellaterra, Barcelona 08193, Spain, Email: eric.bach@imb-cnm.csic.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001252172700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6163
Permanent link to this record
 

 
Author Weber, M. et al; Esperante, D.
Title DONES EVO: Risk mitigation for the IFMIF-DONES facility Type Journal Article
Year 2024 Publication (up) Nuclear Materials and Energy Abbreviated Journal Nucl. Mater. Energy
Volume 38 Issue Pages 101622 - 5pp
Keywords Signal Transmission Improvement; RF Conditioning Optimisation; Beam Extraction Device; Medical Isotopes Production; Lithium Purification; Critical Components Manufacture
Abstract The International Fusion Materials Irradiation Facility- DEMO Oriented Neutron Source (IFMIF-DONES) is a scientific infrastructure aimed to provide an intense neutron source for the qualification of materials to be used in future fusion power reactors. Its implementation is critical for the construction of the fusion DEMOnstration Power Plant (DEMO). IFMIF-DONES is a unique facility requiring a broad set of technologies. Although most of the necessary technologies have already been validated, there are still some aspects that introduce risks in the evolution of the project. In order to mitigate these risks, a consortium of companies, with the support of research centres and the funding of the CDTI (Centre for the Development of Industrial Technology and Innovation), has launched the DONES EVO Programme, which comprises six lines of research: center dot Improvement of signal transmission and integrity (planning and integration risks) center dot Optimisation of RF conditioning processes (planning and reliability risks) center dot Development of a reliable beam extraction device (reliability risks) center dot Development of technologies for the production of medical isotopes (reliability risks) center dot Improvement of critical parts of the lithium purification system (safety and reliability risks) center dot Validation of the manufacture of critical components with special materials (reliability risk). DONES EVO will focus on developing the appropriate response to the risks identified in the IFMIFDONES project through research and prototyping around the associated technologies.
Address [Weber, M.; Ibarra, A.; Maldonado, R.; Podadera, I.] DONES Espana Consortium, IFMIF, Granada, Spain
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001202783400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6075
Permanent link to this record