toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kogler, R.; Nachman, B.; Schmidt, A.; Asquith, L.; Winkels, E.; Campanelli, M.; Delitzsch, C.; Harris, P.; Hinzmann, A.; Kar, D.; McLean, C.; Pilot, J.; Takahashi, Y.; Tran, N.; Vernieri, C.; Vos, M. url  doi
openurl 
  Title Jet substructure at the Large Hadron Collider Type Journal Article
  Year 2019 Publication (down) Reviews of Modern Physics Abbreviated Journal Rev. Mod. Phys.  
  Volume 91 Issue 4 Pages 045003 - 44pp  
  Keywords  
  Abstract Jet substructure has emerged to play a central role at the Large Hadron Collider, where it has provided numerous innovative ways to search for new physics and to probe the standard model, particularly in extreme regions of phase space. This review focuses on the development and use of state-of-the-art jet substructure techniques by the ATLAS and CMS experiments.  
  Address [Kogler, Roman; Hinzmann, Andreas] Univ Hamburg, Hamburg, Germany, Email: roman.kogler@uni-hamburg.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-6861 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000505698100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4238  
Permanent link to this record
 

 
Author Dorigo, T. et al; Ramos, A.; Ruiz de Austri, R. url  doi
openurl 
  Title Toward the end-to-end optimization of particle physics instruments with differentiable programming Type Journal Article
  Year 2023 Publication (down) Reviews in Physics Abbreviated Journal Rev. Phys.  
  Volume 10 Issue Pages 100085 - pp  
  Keywords  
  Abstract The full optimization of the design and operation of instruments whose functioning relies on the interaction of radiation with matter is a super-human task, due to the large dimensionality of the space of possible choices for geometry, detection technology, materials, data-acquisition, and information-extraction techniques, and the interdependence of the related parameters. On the other hand, massive potential gains in performance over standard, “experience-driven” layouts are in principle within our reach if an objective function fully aligned with the final goals of the instrument is maximized through a systematic search of the configuration space. The stochastic nature of the involved quantum processes make the modeling of these systems an intractable problem from a classical statistics point of view, yet the construction of a fully differentiable pipeline and the use of deep learning techniques may allow the simultaneous optimization of all design parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6096  
Permanent link to this record
 

 
Author Gonzalez-Iglesias, D.; Gimeno, B.; Esperante, D.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster-Martinez, N.; Blanch, C.; Martinez, E.; Menendez, A.; Fuster, J.; Grudiev, A. url  doi
openurl 
  Title Non-resonant ultra-fast multipactor regime in dielectric-assist accelerating structures Type Journal Article
  Year 2024 Publication (down) Results in Physics Abbreviated Journal Results Phys.  
  Volume 56 Issue Pages 107245 - 12pp  
  Keywords Multipactor; Dielectric accelerating structures; RF particle accelerators; Plasma discharge  
  Abstract The objective of this work is the evaluation of the risk of suffering a multipactor discharge in an S-band dielectric-assist accelerating (DAA) structure for a compact low-energy linear particle accelerator dedicated to hadrontherapy treatments. A DAA structure consists of ultra-low loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure, with the advantage of having an extremely high quality factor and very high shunt impedance at room temperature, and it is therefore proposed as a potential alternative to conventional disk-loaded copper structures. However, it has been observed that these structures suffer from multipactor discharges. In fact, multipactor is one of the main problems of these devices, as it limits the maximum accelerating gradient. Because of this, the analysis of multipactor risk in the early design steps of DAA cavities is crucial to ensure the correct performance of the device after fabrication. In this paper, we present a comprehensive and detailed study of multipactor in our DAA design through numerical simulations performed with an in-house developed code based on the Monte-Carlo method. The phenomenology of the multipactor (resonant electron trajectories, electron flight time between impacts, etc.) is described in detail for different values of the accelerating gradient. It has been found that in these structures an ultra-fast non-resonant multipactor appears, which is different from the types of multipactor theoretically studied in the scientific literature. In addition, the effect of several low electron emission coatings on the multipactor threshold is investigated. Furthermore, a novel design based on the modification of the DAA cell geometry for multipactor mitigation is introduced, which shows a significant increase in the accelerating gradient handling capabilities of our prototype.  
  Address [Gonzalez-Iglesias, Daniel; Gimeno, Benito; Esperante, Daniel; Martinez-Reviriego, Pablo; Martin-Luna, Pablo; Fuster-Martinez, Nuria; Blanch, Cesar; Martinez, Eduardo; Menendez, Abraham; Fuster, Juan] CSIC UV, Inst Fis Corpuscular IF, c Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3797 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001133850600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5866  
Permanent link to this record
 

 
Author Alekhin, S. et al; Hernandez, P. url  doi
openurl 
  Title A facility to search for hidden particles at the CERN SPS: the SHiP physics case Type Journal Article
  Year 2016 Publication (down) Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 79 Issue 12 Pages 124201 - 137pp  
  Keywords beyond the standard model physics; intensity frontier experiment; hidden sectors; heavy neutral leptons; dark photons  
  Abstract This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, tau -> 3 μand to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.  
  Address [Alekhin, Sergey] DESY, Platanenallee 6, D-15738 Zeuthen, Germany, Email: oleg.ruchayskiy@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387025400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2852  
Permanent link to this record
 

 
Author Gisbert, H.; Pich, A. url  doi
openurl 
  Title Direct CP violation in K-0 -> pi pi : Standard Model Status Type Journal Article
  Year 2018 Publication (down) Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 81 Issue 7 Pages 076201 - 22pp  
  Keywords Kaon decays; CP violation; Standard Model  
  Abstract In 1988 the NA31 experiment presented the first evidence of direct CP violation in the K-0 -> pi pi decay amplitudes. A clear signal with a 7.2 sigma statistical significance was later established with the full data samples from the NA31, E731, NA48 and KTeV experiments, confirming that CP violation is associated with a Delta S = 1 quark transition, as predicted by the Standard Model. However, the theoretical prediction for the measured ratio epsilon'/epsilon has been a subject of strong controversy along the years. Although the underlying physics was already clarified in 2001, the recent release of improved lattice data has revived again the theoretical debate. We review the current status, discussing in detail the different ingredients that enter into the calculation of this observable and the reasons why seemingly contradictory predictions were obtained in the past by several groups. An update of the Standard Model prediction is presented and the prospects for future improvements are analysed. Taking into account all known short-distance and long-distance contributions, one obtains Re (epsilon' / epsilon) = (15 +/- 7) . 10(-4), in good agreement with the experimental measurement.  
  Address [Gisbert, Hector; Pich, Antonio] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Apt Correus 22085, E-46071 Valencia, Spain, Email: Antonio.Pich@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000436545600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3641  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva