toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Athenodorou, A.; Binosi, D.; Boucaud, P.; De Soto, F.; Papavassiliou, J.; Rodriguez-Quintero, J.; Zafeiropoulos, S. url  doi
openurl 
  Title On the zero crossing of the three-gluon vertex Type Journal Article
  Year 2016 Publication (up) Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 761 Issue Pages 444-449  
  Keywords Lattice simulations; Three-gluon vertex; Zero crossing; Schwinger-Dyson equations  
  Abstract We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.  
  Address [Athenodorou, A.] Univ Cyprus, Dept Phys, POB 20537, CY-1678 Nicosia, Cyprus, Email: binosi@ectstar.eu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000384469900063 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2939  
Permanent link to this record
 

 
Author Nzongani, U.; Zylberman, J.; Doncecchi, C.E.; Perez, A.; Debbasch, F.; Arnault, P. url  doi
openurl 
  Title Quantum circuits for discrete-time quantum walks with position-dependent coin operator Type Journal Article
  Year 2023 Publication (up) Quantum Information Processing Abbreviated Journal Quantum Inf. Process.  
  Volume 22 Issue 7 Pages 270 - 46pp  
  Keywords Quantum walks; Quantum circuits; Quantum simulation  
  Abstract The aim of this paper is to build quantum circuits that implement discrete-time quantum walks having an arbitrary position-dependent coin operator. The position of the walker is encoded in base 2: with n wires, each corresponding to one qubit, we encode 2(n) position states. The data necessary to define an arbitrary position-dependent coin operator is therefore exponential in n. Hence, the exponentiality will necessarily appear somewhere in our circuits. We first propose a circuit implementing the position-dependent coin operator, that is naive, in the sense that it has exponential depth and implements sequentially all appropriate position-dependent coin operators. We then propose a circuit that “transfers” all the depth into ancillae, yielding a final depth that is linear in n at the cost of an exponential number of ancillae. Themain idea of this linear-depth circuit is to implement in parallel all coin operators at the different positions. Reducing the depth exponentially at the cost of having an exponential number of ancillae is a goal which has already been achieved for the problem of loading classical data on a quantum circuit (Araujo in Sci Rep 11:6329, 2021) (notice that such a circuit can be used to load the initial state of the walker). Here, we achieve this goal for the problem of applying a position-dependent coin operator in a discrete-time quantum walk. Finally, we extend the result of Welch (New J Phys 16:033040, 2014) from position-dependent unitaries which are diagonal in the position basis to position-dependent 2 x 2-block-diagonal unitaries: indeed, we show that for a position dependence of the coin operator (the block-diagonal unitary) which is smooth enough, one can find an efficient quantum-circuit implementation approximating the coin operator up to an error epsilon (in terms of the spectral norm), the depth and size of which scale as O(1/epsilon). A typical application of the efficient implementation would be the quantum simulation of a relativistic spin-1/2 particle on a lattice, coupled to a smooth external gauge field; notice that recently, quantum spatial-search schemes have been developed which use gauge fields as the oracle, to mark the vertex to be found (Zylberman in Entropy 23:1441, 2021), (Fredon arXiv:2210.13920). A typical application of the linear-depth circuit would be when there is spatial noise on the coin operator (and hence a non-smooth dependence in the position).  
  Address [Nzongani, Ugo; Doncecchi, Carlo-Elia; Arnault, Pablo] Univ Paris Saclay, CNRS, INRIA, Lab Methodes Formelles,ENS Paris Saclay, F-91190 Gif Sur Yvette, France, Email: ugo.nzongani@universite-paris-saclay.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1570-0755 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001022408900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5587  
Permanent link to this record
 

 
Author Jay, G.; Arnault, P.; Debbasch, F. url  doi
openurl 
  Title Dirac quantum walks with conserved angular momentum Type Journal Article
  Year 2021 Publication (up) Quantum Studies-Mathematics and Foundations Abbreviated Journal Quantum Stud. Math. Found.  
  Volume 8 Issue Pages 419-430  
  Keywords Quantum walks; Quantum simulation; Lattice field theory  
  Abstract A quantum walk (QW) simulating the flat (1+2)D Dirac equation on a spatial polar grid is constructed. Because fermions are represented by spinors, which do not constitute a representation of the rotation group SO(3), but rather of its double cover SU(2), the QW can only be defined globally on an extended spacetime where the polar angle extends from 0 to 4 pi. The coupling of the QW with arbitrary electromagnetic fields is also presented. Finally, the cylindrical relativistic Landau levels of the Dirac equation are computed explicitly and simulated by the QW.  
  Address [Jay, Gareth] Univ Western Australia, Phys Dept, Perth, WA 6009, Australia, Email: gareth.jay@uwa.edu.au;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-5609 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000697709700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4975  
Permanent link to this record
 

 
Author n_TOF Collaboration (Alcayne, V. et al); Balibrea-Correa, J.; Domingo-Pardo, C.; Lerendegui-Marco, J.; Babiano-Suarez, V.; Ladarescu, I. url  doi
openurl 
  Title A Segmented Total Energy Detector (sTED) optimized for (n,γ) cross-section measurements at n_TOF EAR2 Type Journal Article
  Year 2024 Publication (up) Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.  
  Volume 217 Issue Pages 11pp  
  Keywords Neutron capture; PHWT; Scintillation detectors; Monte Carlo simulation  
  Abstract The neutron time-of-flight facility nTOF at CERN is a spallation source dedicated to measurements of neutroninduced reaction cross-sections of interest in nuclear technologies, astrophysics, and other applications. Since 2014, Experimental ARea 2 (EAR2) is operational and delivers a neutron fluence of similar to 4 center dot 10(7) neutrons per nominal proton pulse, which is similar to 50 times higher than the one of Experimental ARea 1 (EAR1) of similar to 8 center dot 10(5) neutrons per pulse. The high neutron flux at EAR2 results in high counting rates in the detectors that challenged the previously existing capture detection systems. For this reason, a Segmented Total Energy Detector (sTED) has been developed to overcome the limitations in the detector's response, by reducing the active volume per module and by using a photo-multiplier (PMT) optimized for high counting rates. This paper presents the main characteristics of the sTED, including energy and time resolution, response to gamma-rays, and provides as well details of the use of the Pulse Height Weighting Technique (PHWT) with this detector. The sTED has been validated to perform neutron-capture cross-section measurements in EAR2 in the neutron energy range from thermal up to at least 400 keV. The detector has already been successfully used in several measurements at nTOF EAR2.  
  Address [Alcayne, V.; Cano-Ott, D.; Garcia, J.; Gonzalez-Romero, E.; Martinez, T.; de Rada, A. Perez; Plaza, J.; Sanchez-Caballero, A.; Mendoza, E.] Ctr Invest Energet Medioambient & Tecnol CIEMAT, Madrid, Spain, Email: victor.alcayne@ciemat.es  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-806x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001185584800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5999  
Permanent link to this record
 

 
Author Martin-Luna, P.; Esperante, D.; Prieto, A.F.; Fuster-Martinez, N.; Rivas, I.G.; Gimeno, B.; Ginestar, D.; Gonzalez-Iglesias, D.; Hueso, J.L.; Llosa, G.; Martinez-Reviriego, P.; Meneses-Felipe, A.; Riera, J.; Regueiro, P.V.; Hueso-Gonzalez, F. doi  openurl
  Title Simulation of electron transport and secondary emission in a photomultiplier tube and validation Type Journal Article
  Year 2024 Publication (up) Sensors and Actuators A-Physical Abbreviated Journal Sens. Actuator A-Phys.  
  Volume 365 Issue Pages 114859 - 10pp  
  Keywords Photomultiplier tube; Photodetector; Proton therapy; Monte Carlo simulation; Measurement  
  Abstract The electron amplification and transport within a photomultiplier tube (PMT) has been investigated by developing an in-house Monte Carlo simulation code. The secondary electron emission in the dynodes is implemented via an effective electron model and the Modified Vaughan's model, whereas the transport is computed with the Boris leapfrog algorithm. The PMT gain, rise time and transit time have been studied as a function of supply voltage and external magnetostatic field. A good agreement with experimental measurements using a Hamamatsu R13408-100 PMT was obtained. The simulations have been conducted following different treatments of the underlying geometry: three-dimensional, two-dimensional and intermediate (2.5D). The validity of these approaches is compared. The developed framework will help in understanding the behavior of PMTs under highly intense and irregular illumination or varying external magnetic fields, as in the case of prompt gamma-ray measurements during pencil-beam proton therapy; and aid in optimizing the design of voltage dividers with behavioral circuit models.  
  Address [Martin-Luna, Pablo; Esperante, Daniel; Fuster-Martinez, Nuria; Gimeno, Benito; Gonzalez-Iglesias, Daniel; Llosa, Gabriela; Martinez-Reviriego, Pablo; Meneses-Felipe, Alba; Hueso-Gonzalez, Fernando] CSIC UV, Inst Fis Corpuscular IFIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: pablo.martin@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-4247 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001131902700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5876  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva